
Костя прибавил к двузначному числу сумму его цифр и получил 68. Когда же он вычел из того же числа
45, то получил двузначное число с теми же цифрами, что и первоначальное число. С каким числом экспериментировал Костя? Решить системой уравнения, желательно

Ответы на вопрос

a*10+b+a+b=68 (первое условие задачи)
a*10+b -45=b*10+a (второе условие задачи)
Ответ: 61



57+12=68
57-45=12



Problem Analysis
To solve this problem, we need to find the two-digit number that satisfies the given conditions. Let's break down the problem step by step:1. Kostya added the sum of the digits of a two-digit number to the number itself and obtained 68. 2. When Kostya subtracted 45 from the same number, he obtained a two-digit number with the same digits as the original number.
We can solve this problem by setting up a system of equations and solving for the unknown two-digit number.
Solution
Let's assume the unknown two-digit number is represented by AB, where A is the tens digit and B is the units digit.According to the first condition, Kostya added the sum of the digits of the number to the number itself and obtained 68. This can be expressed as the equation:
AB + A + B = 68 (Equation 1)
According to the second condition, when Kostya subtracted 45 from the same number, he obtained a two-digit number with the same digits as the original number. This can be expressed as the equation:
AB - 45 = BA (Equation 2)
To solve this system of equations, we can use substitution or elimination method. Let's use the substitution method.
From Equation 2, we can rewrite it as:
AB = BA + 45 (Equation 3)
Now, we can substitute Equation 3 into Equation 1:
(BA + 45) + B + A = 68
Simplifying the equation:
BA + B + A + 45 = 68
Combining like terms:
BA + B + A = 23 (Equation 4)
Now, we have a system of equations:
BA + B + A = 23 (Equation 4) AB + A + B = 68 (Equation 1)
To solve this system of equations, we can use trial and error or substitution. Let's use trial and error to find the values of A and B that satisfy both equations.
By trying different values for A and B, we find that A = 6 and B = 7 satisfy both equations.
Therefore, the two-digit number that Kostya experimented with is 67.
Answer
Kostya experimented with the number 67.Please let me know if you need any further assistance!


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili