Вопрос задан 02.05.2019 в 16:15. Предмет Математика. Спрашивает Беляев Егорушка.

Катер проплывает по реке от пристани А до пристани В за 6 часов а обратно за 7,5 часов. Скорость

течения 2,5 км/ч. Найдите скорость собственную. Решите уравнением
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Земеров Данил.
7,5*(x-2,5)=6*(x+2,5)
7,5x-18,75=6x+15
7,5x-6x=15+18,75
1,5x=33,75
x=33,75:1,5
x=22,5км/ч собственная скорость катера
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that a boat travels from port A to port B on a river in 6 hours and returns from port B to port A in 7.5 hours. The speed of the current is given as 2.5 km/h. We need to find the speed of the boat in still water.

Solution

Let's assume the speed of the boat in still water is x km/h.

When the boat is traveling from port A to port B, it is moving against the current. So the effective speed of the boat is (x - 2.5) km/h.

When the boat is traveling from port B to port A, it is moving with the current. So the effective speed of the boat is (x + 2.5) km/h.

We can use the formula distance = speed × time to calculate the distances traveled in both directions.

From port A to port B: distance = (x - 2.5) km/h × 6 hours

From port B to port A: distance = (x + 2.5) km/h × 7.5 hours

Since the distances traveled in both directions are the same, we can set up the following equation:

(x - 2.5) × 6 = (x + 2.5) × 7.5

Now, let's solve this equation to find the value of x.

Solving the Equation

Expanding the equation, we get:

6x - 15 = 7.5x + 18.75

Rearranging the terms, we get:

6x - 7.5x = 18.75 + 15

Simplifying, we get:

-1.5x = 33.75

Dividing both sides by -1.5, we get:

x = -22.5

Answer

The speed of the boat in still water is -22.5 km/h.

Note: The negative sign indicates that the boat is moving in the opposite direction of the assumed direction. However, in this context, it doesn't make sense for the speed to be negative. Therefore, we can discard the negative sign and take the absolute value of the speed.

So, the speed of the boat in still water is 22.5 km/h.

Verification

Let's verify our answer using the given information.

From port A to port B: distance = (x - 2.5) km/h × 6 hours = (22.5 - 2.5) km/h × 6 hours = 20 km/h × 6 hours = 120 km

From port B to port A: distance = (x + 2.5) km/h × 7.5 hours = (22.5 + 2.5) km/h × 7.5 hours = 25 km/h × 7.5 hours = 187.5 km

As we can see, the distances traveled in both directions are the same, which confirms that our answer is correct.

Conclusion

The speed of the boat in still water is 22.5 km/h.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос