
Найдите периметр треугольника, если две его стороны равны 6 и 3, а угол между ними равен 45°.


Ответы на вопрос




Для нахождения периметра треугольника, воспользуемся формулой периметра: P = a + b + c, где a, b, c - стороны треугольника.
Из условия известно, что две стороны треугольника равны 6 и 3, а угол между ними равен 45°. Найдем третью сторону треугольника, используя тригонометрические функции.
Так как известны две стороны и угол между ними, можно воспользоваться косинусной теоремой: c^2 = a^2 + b^2 - 2ab*cos(C), где c - третья сторона, a и b - известные стороны, С - угол между сторонами.
Подставим известные значения: c^2 = 6^2 + 3^2 - 2*6*3*cos(45°), c^2 = 36 + 9 - 36*cos(45°), c^2 = 45 - 36*cos(45°), c^2 = 45 - 25.455, c^2 = 19.545, c ≈ √19.545, c ≈ 4.42.
Теперь, когда известны все стороны треугольника, можем найти его периметр: P = 6 + 3 + 4.42, P = 13.42.
Итак, периметр треугольника равен 13.42.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili