Вопрос задан 01.05.2019 в 01:58. Предмет Математика. Спрашивает Спирина Надежда.

Дана трапеция АВСD. основания АD и ВС. AD=30 см, ВС=14см.АВ=12см и угол В=120°. Найти площадь

трапеции
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Anikin Mikhail.
Угол В = 150° => угол А=180°-150°=30°
согласно теореме прямоугольных треугольников(получаем при проведении высоты), катет, лежащий против 30 градусов равен половине гипотенузы(т.е.АВ)=> BH=1\2 AB= 6 см
S=1\2h(AD+BC)=1\2*6*(14+30)=22*6=132 см
²
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для нахождения площади трапеции нам понадобятся основания трапеции и её высота.

В данном случае, основания трапеции АD и ВС равны 30 см и 14 см соответственно. АВ = 12 см.

Чтобы найти высоту трапеции, мы можем воспользоваться свойством прямоугольного треугольника. У нас есть один прямой угол в точке В, а также известны длины сторон ВС и АВ.

Мы можем использовать теорему Пифагора для нахождения высоты трапеции. По теореме Пифагора, сумма квадратов катетов прямоугольного треугольника равна квадрату гипотенузы. В нашем случае катеты это ВС и половина основания АД (так как АД - это диагональ трапеции), и гипотенуза это высота трапеции.

Высота трапеции (h) найдется по формуле:

h = √(AB^2 - BC^2)

где AB = 12 см и BC = (AD - BC) / 2 = (30 - 14) / 2 = 8 см.

Подставляя значения, получаем:

h = √(12^2 - 8^2) = √(144 - 64) = √80 ≈ 8.94 см

Теперь, когда у нас есть высота и основания, мы можем найти площадь трапеции по формуле:

S = (AB + CD) * h / 2

где AB = 12 см, CD = 14 см и h = 8.94 см.

Подставляя значения, получаем:

S = (12 + 14) * 8.94 / 2 = 26 * 8.94 / 2 ≈ 116.28 см²

Таким образом, площадь трапеции АВСD равна примерно 116.28 квадратных сантиметров.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос