
Вопрос задан 30.04.2019 в 22:12.
Предмет Математика.
Спрашивает Печёнкин Олег.
Ұзындығы 2 см болатын р векторын сызындар.Сызғышты пайдаланып, 3р,-2р векторлары салындар


Ответы на вопрос

Отвечает Бургомистров Даниил.
3р=3•2=6
-2р=(-2)•2=-4
-2р=(-2)•2=-4



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Finding the Length of a Vector
To find the length of a vector, we can use the formula for the magnitude or Euclidean norm of a vector. For a vector r with components (x, y, z), the magnitude is given by:|r| = sqrt(x^2 + y^2 + z^2)
In this case, we are given two vectors with a length of 2 cm. Let's calculate the components of these vectors and find their lengths.
Vector 1: r1
Let's assume that vector r1 has components (x1, y1, z1). Since the length of r1 is 2 cm, we can set up the following equation:sqrt(x1^2 + y1^2 + z1^2) = 2
We can solve this equation to find the possible values of x1, y1, and z1.
Vector 2: r2
Similarly, let's assume that vector r2 has components (x2, y2, z2). Since the length of r2 is also 2 cm, we can set up the following equation:sqrt(x2^2 + y2^2 + z2^2) = 2
We can solve this equation to find the possible values of x2, y2, and z2.
Calculating the Components of Vector 3: r3
We are given two vectors, 3r and -2r. To find the components of vector r3, we need to multiply the components of r by the scalar values.Let's assume that vector r has components (x, y, z). Then, the components of 3r would be (3x, 3y, 3z), and the components of -2r would be (-2x, -2y, -2z).
Therefore, the components of vector r3 would be the sum of the components of 3r and -2r:
r3 = (3x - 2x, 3y - 2y, 3z - 2z) = (x, y, z)
So, the components of vector r3 are the same as the components of vector r.
Conclusion
In summary, to find the components of the vectors with a length of 2 cm, we need to solve the equations sqrt(x1^2 + y1^2 + z1^2) = 2 and sqrt(x2^2 + y2^2 + z2^2) = 2. The components of vector r3 are the same as the components of vector r.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili