Вопрос задан 29.04.2019 в 22:08. Предмет Математика. Спрашивает Tulkubaev Ilmir.

В теннисном турнире участвуют 10 спортсменов. Сколькими способами теннисисты могут завоевать

золото, серебро и бронзу?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Сотникова Милана.
10*3=30 (ну не знаю я бы так решила)
0 0
Отвечает Бойко Ксения.
30-тью надеюсь правильно!!!!!!!!!!!!!!!!!!!!!
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Это пример комбинаторной задачи, в которой нужно найти количество упорядоченных сочетаний из 10 элементов по 3. Формула для этого такая: $$A_n^k = \frac{n!}{(n-k)!}$$, где $n$ - общее число элементов, $k$ - число выбранных элементов, $n!$ - факториал числа $n$. Подставляя в формулу $n=10$ и $k=3$, получаем: $$A_{10}^3 = \frac{10!}{(10-3)!} = \frac{10!}{7!} = \frac{10 \cdot 9 \cdot 8 \cdot 7!}{7!} = 10 \cdot 9 \cdot 8 = 720$$ Ответ: теннисисты могут завоевать золото, серебро и бронзу 720 способами. Эта задача встречается в разных источниках по комбинаторике, например, [здесь](https://infourok.ru/testy-na-temu-elementy-kombinatoriki-i-teorii-veroyatnosti-9-klass-4334425.html) или [здесь](https://multiurok.ru/files/urok-2-rieshieniie-prostieishikh-kombinatornykh-za.html).

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос