
Помогите ребята!Стрелок стреляет по мишени один раз. в случае промаха стрелок делает второй выстрел
по той же мишени. Вероятность попасть в мишень при одном выстреле будет равна 0,8. Найдите вероятность того,что мишень будет поражена(либо первым, либо вторым)

Ответы на вопрос

Вероятность промаха в одной попытке - дополнительная к вероятности попасть, т.е. P = 1 - 0.8 = 0.2
Вероятность попадания/непопадания каждого выстрела - величина независимая, следовательно вероятность промаха в двух выстрелах, равна произведению вероятности в каждом отдельном выстреле, т.е.
Р = 0,2 * 0,2 = 0,04
Ну и как уже утверждалось, искомая вероятность (хотя бы одного попадания) есть дополнительная вероятность события двойного промаха, т.е.
P = 1 - 0.04 = 0.96
Ответ: 0,96



Problem Analysis
We are given that a shooter takes two shots at a target. If the first shot misses, the shooter takes a second shot at the same target. The probability of hitting the target with a single shot is 0.8. We need to find the probability that the target is hit either with the first shot or the second shot.Solution
To find the probability of hitting the target with either the first or the second shot, we can use the concept of complementary probability. The complementary probability of an event A is equal to 1 minus the probability of the event not occurring.Let's calculate the probability of missing the target with a single shot. Since the probability of hitting the target with a single shot is 0.8, the probability of missing the target with a single shot is 1 - 0.8 = 0.2.
Now, let's consider the two possible scenarios: 1. The shooter hits the target with the first shot. 2. The shooter misses the target with the first shot and hits it with the second shot.
The probability of hitting the target with the first shot is 0.8.
The probability of missing the target with the first shot is 0.2. In this case, the shooter takes a second shot at the same target. The probability of hitting the target with the second shot is also 0.8.
To find the probability of either the first or the second shot hitting the target, we can add the probabilities of the two scenarios:
Probability of hitting the target with either the first or the second shot = Probability of hitting with the first shot + (Probability of missing with the first shot * Probability of hitting with the second shot)
Let's calculate the probability:
Probability of hitting the target with either the first or the second shot = 0.8 + (0.2 * 0.8) = 0.8 + 0.16 = 0.96
Therefore, the probability that the target will be hit either with the first shot or the second shot is 0.96.
Answer
The probability that the target will be hit either with the first shot or the second shot is 0.96.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili