Вопрос задан 27.04.2019 в 07:08. Предмет Математика. Спрашивает Судилова Елизавета.

Sina= - найти sin2a cos2a tga

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Котова Анастасия.
Sina=-3/5
cosa=-√(1-sin²a)=-√(1-9/25)=-√(16/25)=-4/5
sin2a=2sinacosa=2*(-3/5)*(-4/5)=24/25
cos2a=cos²a-sin²a=16/25-9/25=7/25
tga=sina/cosa=-3/5:(-4/5)=3/5*5/4=3/4
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Формулы для нахождения значений тригонометрических функций в терминах других тригонометрических функций могут быть полезны при решении данной задачи. Давайте начнем с раскрытия выражения sin(2a) и cos(2a) в терминах sin(a) и cos(a).

Формулы для sin(2a) и cos(2a)

Для начала, мы можем использовать следующие тригонометрические формулы: 1. sin(2a) = 2 * sin(a) * cos(a) 2. cos(2a) = cos^2(a) - sin^2(a)

Нахождение tg(a)

Теперь, чтобы найти tg(a), мы можем воспользоваться определением tg(a) в терминах sin(a) и cos(a): 3. tg(a) = sin(a) / cos(a)

Подстановка в выражение

Теперь, используя формулы для sin(2a) и cos(2a), мы можем подставить их в выражение sin(2a) + cos(2a) + tg(a):

sin(2a) + cos(2a) + tg(a) = 2 * sin(a) * cos(a) + (cos^2(a) - sin^2(a)) + (sin(a) / cos(a))

Затем можно дальше упростить это выражение, используя определения sin(a), cos(a) и tg(a), чтобы найти окончательное значение.

Если у вас есть конкретные значения для a (например, a = 30 градусов), я могу помочь вам вычислить это выражение.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос