Вопрос задан 09.05.2018 в 20:43. Предмет Математика. Спрашивает Скрябина Юлия.

Медиана ВМ и биссектриса АР треугольника АВС пересекаются в точке К, длина стороны АС втрое больше

длины стороны АВ. Найдите отношение площади треугольника АКМ к площади четырехугольника КРСМ
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Баисова Дана.

Т.к. ВМ – биссектриса треугольника АВС, то S(АВМ)=S(ВСМ)!!! Т.к. АК – биссектриса треугольника АВМ, то S(АВК)=S(АКМ)=S(АВМ)/2=S(ВСМ)/2Проведем МТ так, что МТ || КР. Тогда КР - средняя линия в треуг-ке ВМТ, а МТ - средняя линия в треуг-ке АРС, значит ВР=РТ=ТС, т.е. ВС=3ВР. По условию ВК=КМ, т.е. ВМ=2ВК. Тогда:S(KBP)=1/2*ВК*ВР*sinКВРS(ВСМ)=1/2*ВМ*ВС*sinКВР=1/2*2ВК*3ВР*sinКВР=3*ВК*ВР*sinКВРТогда  S(KBP)/S(ВСМ) = 1/ 6, а значит!!! S(KPСМ)/S(ВСМ) = 5/6.Сравниваем строчки , помеченные !!! и получаем  S(AKМ) : S(KPСМ) = 2: 6/5 = 3/5

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос