
Вопрос задан 06.04.2019 в 04:38.
Предмет Математика.
Спрашивает Храмцов Дима.
Натуральные числа a и b таковы что a/b меньше 1. Докажите что дробь 2a+b/3b больше дроби a/b


Ответы на вопрос

Отвечает Кунанбаев Рустам.
По условию дробь a/b меньше 1, тогда a<b
(2a+b)/3b>a/b
(2a+b)*b>3ab
2ab+b^2>3ab
2ab-3ab>-b^2
-ab>-b^2
ab<b^2
a<b
Ч.т.д.
(2a+b)/3b>a/b
(2a+b)*b>3ab
2ab+b^2>3ab
2ab-3ab>-b^2
-ab>-b^2
ab<b^2
a<b
Ч.т.д.



Отвечает Кусайн Биржан.
Из a/b<1 следует, что b>a
Домножим дробь a/b на 3 и получим 3a/3b и сравним
2a+b/3b и 3a/3b
Так как знаменатели одинаковые то сравним числители
2a+b> 3a, так как b>a
Не забывай про лучший ответ.
Домножим дробь a/b на 3 и получим 3a/3b и сравним
2a+b/3b и 3a/3b
Так как знаменатели одинаковые то сравним числители
2a+b> 3a, так как b>a
Не забывай про лучший ответ.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili