Вопрос задан 28.03.2019 в 09:18. Предмет Математика. Спрашивает Коробейник Януля.

В тетраэдре DABC точка M-середина AD,P принадлежит DC и DP\PC=1\3.построите сечение тетраэдра

плоскостью проходящей через точек M и P и параллельной BC.найдите площадь сечения, если все ребра тетраэдра равны а
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Курненкова Валерия.
В сечении имеем равнобедренный треугольник МРК. МК = МР.
Сторона РК (по свойству подобных треугольников) равна 1/4 части ВС: РК =a/4.
Так как углы всех граней тетраэдра равны 60°, то длину сторон МК и МР находим по теореме косинусов из треугольника МДP:
(по условию МД = a/2, а КД = РД = a/4)
PM = √((a²/4)+(a²/16)-2*(a/2)*(a/4)*cos60) =
= √((4a²+a²-2a²)/16 = (a√3) / 4.
Высота h треугольника РМК равна:
h = √((3a²/16) - ((a/4)/2)²) = a√22 / 8.
Искомая площадь равна:
 S(MPK) = (1/2)*(a/4)*(a√22/8) = a²√22 / 64.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос