
Вопрос задан 05.05.2018 в 21:50.
Предмет Математика.
Спрашивает Ахмадиева Камилла.
Угол между касательными равен 46 найдите образованный радиусами. проведенными в точки касания


Ответы на вопрос

Отвечает Климушкина Даша.
Обозначим точки касания А и С, а точку пересечения касательных В, точка О - центр окружности. Соединим точки А и С.
∠АВС=46° - по условию. Необходимо найти ∠АОС.
Треугольник АВС - равнобедренный, найдём углы при основании этого треугольника. ∠ВАС=∠ВСА, а сумма углов треугольника 180°. Можем записать
∠ВАС+∠ВСА+∠АВС=180° или 2*∠ВАС+∠АВС=180°
2*∠ВАС+46°=180°
∠ВАС=(180°-46°):2=134°:2=67°.
Угол ВАО прямой, так как касательная всегда перпендикулярна радиусу окружности. Можем найти ∠ОАС
∠ОАС=90°-67°=23°
∠ОАС=∠ОСА так как треугольник АОС равнобедренный (АО и СО - радиусы). Теперь можем найти ∠АОС
∠АОС=180°-∠ОАС-∠ОСА=180°-23°-23°=134°


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili