
Помогите, пожалуйста! Есть мячик теннисный - 6,7 см и мячик пингпонгнвюый - 4,0 см А) найти
отношения площадей (коэффициент) б) соотношения объёма (коэффицент)

Ответы на вопрос




Давайте начнем с расчета площади поверхности каждого из мячиков и объема, используя формулы для площади поверхности и объема сферы.
1. Площадь поверхности (S) сферы: Формула для площади поверхности сферы: \(S = 4\pi r^2\), где \(r\) - радиус сферы.
Для теннисного мяча с радиусом \(r_1 = 6,7 \, см\): \[S_1 = 4\pi (6,7)^2\]
Для мяча пинг-понга с радиусом \(r_2 = 4,0 \, см\): \[S_2 = 4\pi (4,0)^2\]
2. Объем (V) сферы: Формула для объема сферы: \(V = \frac{4}{3}\pi r^3\)
Для теннисного мяча: \[V_1 = \frac{4}{3}\pi (6,7)^3\]
Для мяча пинг-понга: \[V_2 = \frac{4}{3}\pi (4,0)^3\]
Теперь мы можем рассчитать отношения:
а) Отношение площадей (коэффициент): \[К_п = \frac{S_1}{S_2}\]
б) Отношение объемов (коэффициент): \[К_о = \frac{V_1}{V_2}\]
Теперь давайте подставим значения и рассчитаем:
\[S_1 = 4\pi (6,7)^2\] \[S_2 = 4\pi (4,0)^2\] \[V_1 = \frac{4}{3}\pi (6,7)^3\] \[V_2 = \frac{4}{3}\pi (4,0)^3\]
И подставим в формулы для отношений:
\[К_п = \frac{S_1}{S_2}\]
\[К_о = \frac{V_1}{V_2}\]
Эти значения дадут вам отношения площадей и объемов теннисного и пинг-понгового мячей.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili