Вопрос задан 27.02.2019 в 11:51. Предмет Математика. Спрашивает Смердов Максим.

В прямоугольном параллелепипеде ABCDA1B1C1D1 известно, что AA1 = 2 см, C1D1 = 5 см, BC = 14 см.

Найдите длину диагонали CA1.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Хохряков Саша.
D(CA1)=√(a^2+b^2+c^2)=√(2^2+5^2+14^2)=√(4+25+196)=√225=15
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти длину диагонали CA1 прямоугольного параллелепипеда ABCDA1B1C1D1, мы можем использовать теорему Пифагора.

Для начала, давайте обозначим стороны прямоугольного параллелепипеда: AB = a, BC = b, AA1 = c, C1D1 = d.

Из условия задачи, нам известно, что AA1 = 2 см, C1D1 = 5 см и BC = 14 см. Мы также знаем, что противоположные стороны прямоугольного параллелепипеда равны, поэтому AB = C1D1 = 5 см и BC = A1D1 = 14 см.

Нахождение длины диагонали CA1:

Мы можем найти длину диагонали CA1, используя теорему Пифагора:

CA1^2 = AB^2 + AA1^2

где CA1 - искомая длина диагонали.

Подставляя известные значения, получим:

CA1^2 = (5 см)^2 + (2 см)^2

CA1^2 = 25 см^2 + 4 см^2

CA1^2 = 29 см^2

Чтобы найти длину диагонали CA1, возьмем квадратный корень от обеих сторон уравнения:

CA1 = √(29 см^2)

CA1 ≈ 5.39 см

Таким образом, длина диагонали CA1 прямоугольного параллелепипеда ABCDA1B1C1D1 примерно равна 5.39 см.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос