
Ширина прямоугольника паралепипида 12 дм она в 2 раза меньше длины а высота больше шерены на 5 см
найдите площадь поверхности паралепипеда и его объем

Ответы на вопрос




Calculation of the Surface Area and Volume of a Parallelepiped
To find the surface area and volume of a parallelepiped, we need to know its dimensions. Let's break down the given information:
- The width of the parallelepiped is 12 dm. - The width is 2 times smaller than the length. - The height is greater than the width by 5 cm.
Let's calculate the length, width, and height of the parallelepiped based on the given information:
1. Width: The width is given as 12 dm. 2. Length: The width is 2 times smaller than the length. Therefore, the length is 2 times the width, which is 2 * 12 dm = 24 dm. 3. Height: The height is greater than the width by 5 cm. Since 1 dm is equal to 10 cm, the height is 12 cm greater than the width. Therefore, the height is 12 cm + 5 cm = 17 cm.
Now that we have the dimensions of the parallelepiped, we can calculate its surface area and volume.
Surface Area of the Parallelepiped
The surface area of a parallelepiped can be calculated by finding the sum of the areas of its six faces. The formula for the surface area of a parallelepiped is:
Surface Area (S) = 2(ab + bc + ac)
Where: - a, b, and c are the lengths of the three edges of the parallelepiped.
In our case, the lengths of the edges are: - a = 12 dm - b = 24 dm - c = 17 cm (converted to dm, which is 1.7 dm)
Let's substitute these values into the formula to calculate the surface area:
S = 2(12 * 24 + 24 * 1.7 + 12 * 1.7) dm²
Simplifying the equation:
S = 2(288 + 40.8 + 20.4) dm²
S = 2(349.2) dm²
S = 698.4 dm²
Therefore, the surface area of the parallelepiped is 698.4 dm².
Volume of the Parallelepiped
The volume of a parallelepiped can be calculated by finding the product of its three dimensions. The formula for the volume of a parallelepiped is:
Volume (V) = a * b * c
Where: - a, b, and c are the lengths of the three edges of the parallelepiped.
In our case, the lengths of the edges are: - a = 12 dm - b = 24 dm - c = 17 cm (converted to dm, which is 1.7 dm)
Let's substitute these values into the formula to calculate the volume:
V = 12 * 24 * 1.7 dm³
V = 489.6 dm³
Therefore, the volume of the parallelepiped is 489.6 dm³.
To summarize: - The surface area of the parallelepiped is 698.4 dm². - The volume of the parallelepiped is 489.6 dm³.
Please note that the calculations are based on the given information and assumptions made about the conversion of units.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili