 
Ширина прямоугольника паралепипида 12 дм она в 2 раза меньше длины а высота больше шерены на 5 см
найдите площадь поверхности паралепипеда и его объем 0
        0
         0
        0
    Ответы на вопрос
 
         0
                    0
                     0
                    0
                 
            Calculation of the Surface Area and Volume of a Parallelepiped
To find the surface area and volume of a parallelepiped, we need to know its dimensions. Let's break down the given information:
- The width of the parallelepiped is 12 dm. - The width is 2 times smaller than the length. - The height is greater than the width by 5 cm.
Let's calculate the length, width, and height of the parallelepiped based on the given information:
1. Width: The width is given as 12 dm. 2. Length: The width is 2 times smaller than the length. Therefore, the length is 2 times the width, which is 2 * 12 dm = 24 dm. 3. Height: The height is greater than the width by 5 cm. Since 1 dm is equal to 10 cm, the height is 12 cm greater than the width. Therefore, the height is 12 cm + 5 cm = 17 cm.
Now that we have the dimensions of the parallelepiped, we can calculate its surface area and volume.
Surface Area of the Parallelepiped
The surface area of a parallelepiped can be calculated by finding the sum of the areas of its six faces. The formula for the surface area of a parallelepiped is:
Surface Area (S) = 2(ab + bc + ac)
Where: - a, b, and c are the lengths of the three edges of the parallelepiped.
In our case, the lengths of the edges are: - a = 12 dm - b = 24 dm - c = 17 cm (converted to dm, which is 1.7 dm)
Let's substitute these values into the formula to calculate the surface area:
S = 2(12 * 24 + 24 * 1.7 + 12 * 1.7) dm²
Simplifying the equation:
S = 2(288 + 40.8 + 20.4) dm²
S = 2(349.2) dm²
S = 698.4 dm²
Therefore, the surface area of the parallelepiped is 698.4 dm².
Volume of the Parallelepiped
The volume of a parallelepiped can be calculated by finding the product of its three dimensions. The formula for the volume of a parallelepiped is:
Volume (V) = a * b * c
Where: - a, b, and c are the lengths of the three edges of the parallelepiped.
In our case, the lengths of the edges are: - a = 12 dm - b = 24 dm - c = 17 cm (converted to dm, which is 1.7 dm)
Let's substitute these values into the formula to calculate the volume:
V = 12 * 24 * 1.7 dm³
V = 489.6 dm³
Therefore, the volume of the parallelepiped is 489.6 dm³.
To summarize: - The surface area of the parallelepiped is 698.4 dm². - The volume of the parallelepiped is 489.6 dm³.
Please note that the calculations are based on the given information and assumptions made about the conversion of units.
 0
                    0
                     0
                    0
                Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
- 
			Математика 
- 
			Литература 
- 
			Алгебра 
- 
			Русский язык 
- 
			Геометрия 
- 
			Английский язык 
- 
			Химия 
- 
			Физика 
- 
			Биология 
- 
			Другие предметы 
- 
			История 
- 
			Обществознание 
- 
			Окружающий мир 
- 
			География 
- 
			Українська мова 
- 
			Информатика 
- 
			Українська література 
- 
			Қазақ тiлi 
- 
			Экономика 
- 
			Музыка 
- 
			Право 
- 
			Беларуская мова 
- 
			Французский язык 
- 
			Немецкий язык 
- 
			МХК 
- 
			ОБЖ 
- 
			Психология 
- 
			Физкультура и спорт 
- 
			Астрономия 
- 
			Кыргыз тили 
- 
			Оʻzbek tili 
 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			 
			