Вопрос задан 25.02.2019 в 19:50. Предмет Математика. Спрашивает Мудрых Георгий.

Пасажирський і швидкий поїзди відїхали одночасно від однієї станції у протилежних напрямках

пасажирський поїзд рухався зі швидкістю 57 км за год що становило три четвертих швидкості швидкого поїзда за який час після виходу поїзди будуть на відстані 399 км один від одного?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Жанабек Бакдаулет.


Вы уже знаете формулу S=vt 
Чтобы ответить на вопрос, нужно знать v м/ч  скорого поезда. 
Скорость пассажирского v₁ нужно разделить на 3 и умножить на 4. 
Таким образом узнаем, чему равна 1/4 скорости  другого (скорого )поезда, затем - чему равна его полная скорость. 
v₂ (cк)=57:3*4=76 км/ч.  
Это можно записать иначе
v₂=v₁× ³/₄, т.е. 57׳/₄
Время, через которое поезда окажутся на расстоянии 399 км друг от друга,  находим, разделив это расстояние на скорость, с какой они отдаляются друг от друга. 
Эта скорость равна сумме скоростей обоих поездов. 
t=S:(v₁+v₂)
(v₁+v₂)=57+76=133 км/ч
t=399:133=3 (часа)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте позначимо час, який пройшов після виходу поїздів, як \( t \) годин. Тоді відстань, яку подолав пасажирський поїзд, буде \( 57t \) км, а швидкий поїзд пройде \( \frac{3}{4} \) цієї відстані, тобто \( \frac{3}{4} \cdot 57t \) км.

Враховуючи, що поїзди рухаються в протилежних напрямках, ми можемо записати рівняння для відстані між ними:

\[ 57t + \frac{3}{4} \cdot 57t = 399 \]

Спростимо це рівняння:

\[ 1 \cdot 57t + \frac{3}{4} \cdot 57t = 399 \]

\[ \frac{4}{4} \cdot 57t + \frac{3}{4} \cdot 57t = 399 \]

\[ \frac{7}{4} \cdot 57t = 399 \]

Тепер розв'яжемо рівняння для знаходження часу \( t \):

\[ t = \frac{399 \cdot \frac{4}{7}}{57} \]

Розрахунок:

\[ t \approx \frac{228}{57} \]

\[ t \approx 4 \]

Отже, через 4 години після виходу поїзди будуть на відстані 399 км один від одного.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос