Вопрос задан 24.02.2019 в 19:34. Предмет Математика. Спрашивает Терзи Иван.

Одна машина может полить парк за 6 часов,а вторая за 8 успеют ли эти машины полить парк работая

вместе за 4 часа?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Давыдова Каролина.
1:6=1/6 парка- поливает одна машина за 1 час
1:8=1/8 парка- поливает вторая машина за 1 час
1/6+1/8=4/24+3/24=7/24 парка - поливают две машины вместе за 1 час
7/24*4=28/24=7/6=1 1/6 парка- польют две машины за 4 часа
1 1/6 больше 1 ⇒ успеют машины полить парк за 4 часа, работая вместе
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given two machines that can water a park. The first machine can water the park in 6 hours, while the second machine can water the park in 8 hours. We need to determine if these machines can water the park together in 4 hours.

Solution

To solve this problem, we can calculate the rate at which each machine waters the park and then determine if their combined rate is sufficient to water the park in 4 hours.

Let's assume that the first machine waters the park at a rate of x park per hour, and the second machine waters the park at a rate of y park per hour.

According to the given information, the first machine can water the park in 6 hours. Therefore, its rate can be calculated as 1/6 park per hour.

Similarly, the second machine can water the park in 8 hours, so its rate can be calculated as 1/8 park per hour.

To determine if the machines can water the park together in 4 hours, we need to calculate their combined rate. The combined rate is the sum of their individual rates.

Let's calculate the combined rate:

Combined rate = Rate of machine 1 + Rate of machine 2

Combined rate = 1/6 + 1/8

To add these fractions, we need to find a common denominator. The least common multiple (LCM) of 6 and 8 is 24.

Combined rate = (1/6) * (4/4) + (1/8) * (3/3)

Combined rate = 4/24 + 3/24

Combined rate = 7/24 park per hour

Now that we have the combined rate, we can determine if the machines can water the park in 4 hours. We can use the formula:

Time = Amount / Rate

In this case, the amount of park to be watered is 1 park (the entire park), and the time is 4 hours.

1 park = (7/24) park per hour * 4 hours

Simplifying the equation:

1 = (7/24) * 4

1 = 28/24

Since 28/24 is greater than 1, it means that the machines can water the park in 4 hours.

Therefore, the answer is: Yes, the machines can water the park together in 4 hours.

Conclusion

The two machines can water the park together in 4 hours. Their combined rate is sufficient to complete the task within the given time frame.

Please let me know if there is anything else I can help you with.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос