
Вопрос задан 24.02.2019 в 10:35.
Предмет Математика.
Спрашивает Кубрак Таисия.
2sinxcosx+sinx+cosx+1=0


Ответы на вопрос

Отвечает Рубчинский Илья.
2sinx*cos+sinx+cosx+1=0
(2sinx*cosx+1)+(sinx+cosx)=0
(2sinx*cosx+1)+(√(sinx+cosx))²=0
(2sinx*cosx+1)+√(sin²x+2sinx*cosx+cos²x)=0
(2sinx*cosx+1)+√(2sinx*cosx+1)=0
замена переменной:
√(2sinx*cosx+1)=t,
t²+t=0
t₁=0, t₂=-1
обратная замена:
1. t=0, 2sinx*cosx+1=0, sin2x=-1
2x=-π/2+2πn, n∈Z |:2
x₁=-π/4+πn. n∈Z
2. t=-1, √(2sinx*cosx+1)=-1. 2sinx*cosx+1=1, 2sinx*cosx=0
sinx=0 или cosx=0
x₂=πn, n∈Z
x₃=π/2+πn, n∈Z
(2sinx*cosx+1)+(sinx+cosx)=0
(2sinx*cosx+1)+(√(sinx+cosx))²=0
(2sinx*cosx+1)+√(sin²x+2sinx*cosx+cos²x)=0
(2sinx*cosx+1)+√(2sinx*cosx+1)=0
замена переменной:
√(2sinx*cosx+1)=t,
t²+t=0
t₁=0, t₂=-1
обратная замена:
1. t=0, 2sinx*cosx+1=0, sin2x=-1
2x=-π/2+2πn, n∈Z |:2
x₁=-π/4+πn. n∈Z
2. t=-1, √(2sinx*cosx+1)=-1. 2sinx*cosx+1=1, 2sinx*cosx=0
sinx=0 или cosx=0
x₂=πn, n∈Z
x₃=π/2+πn, n∈Z



Отвечает Ковалевская Ирина.



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Для решения данного уравнения, мы можем воспользоваться заменой переменных. Пусть t = sin(x) + cos(x). Тогда уравнение примет вид:
2t + t^2 + 1 = 0.
Теперь мы можем решить это уравнение, используя квадратное уравнение. Перепишем его в стандартной форме:
t^2 + 2


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili