
Из пункта А в пункт В, расстояние между которыми 50км, одновременно выехали автомобилист и
велосипедист. Известно, что в час автомобилист проезжает на 65км больше, чем велосипедист. Определите скорость велосипедиста, если известно, что он прибыл в пункт В на 4часа 20 минут позже автомобилиста. Ответ дайте вкм/ч.

Ответы на вопрос

х+65км/ч скорость автомобилиста,время 50/(х+65)ч
50/х-50/(х+65)=13/3
13х(х+65)-3*50*(х+65-х)=0
13х²+845х-9750=0
х²+65х-750=0
х1+х2=-65 и х1*х2=-750
х1=-75 не удов усл
х2=10км/ч скорость велосипедиста



Problem Analysis
We are given that a car and a cyclist simultaneously traveled from point A to point B, which are 50 km apart. The car travels 65 km/h faster than the cyclist. We need to determine the speed of the cyclist if we know that the cyclist arrived at point B 4 hours and 20 minutes later than the car.Solution
Let's assume the speed of the cyclist is v km/h. Since the car travels 65 km/h faster than the cyclist, the speed of the car is v + 65 km/h.We can use the formula distance = speed × time to calculate the time taken by each of them to travel from point A to point B.
The time taken by the cyclist is given by: time taken by cyclist = distance / speed of cyclist
The time taken by the car is given by: time taken by car = distance / speed of car
We know that the time taken by the cyclist is 4 hours and 20 minutes longer than the time taken by the car. We can convert 4 hours and 20 minutes to hours by dividing by 60: 4 hours and 20 minutes = (4 × 60 + 20) minutes = 260 minutes = 260 / 60 hours = 4.33 hours
So, we have the equation: time taken by cyclist = time taken by car + 4.33 hours
Substituting the values, we get: distance / speed of cyclist = distance / speed of car + 4.33
Since the distance is the same for both, we can cancel it out: 1 / speed of cyclist = 1 / speed of car + 4.33
Now, let's substitute the values for the speed of the car and solve for the speed of the cyclist.
Calculation
Let's substitute the values into the equation and solve for the speed of the cyclist:1 / v = 1 / (v + 65) + 4.33
To solve this equation, we can multiply both sides by v(v + 65) to eliminate the fractions:
v(v + 65) / v = v(v + 65) / (v + 65) + 4.33(v + 65)
Simplifying the equation:
v + 65 = v + 65 + 4.33v + 282.45
Combining like terms:
v + 65 = 5.33v + 347.45
Subtracting v from both sides:
65 = 4.33v + 347.45
Subtracting 347.45 from both sides:
-282.45 = 4.33v
Dividing both sides by 4.33:
v ≈ -65.26
Since speed cannot be negative, we discard this solution.
Answer
Based on the calculations, we find that the speed of the cyclist is approximately -65.26 km/h. However, since speed cannot be negative, this solution is not valid.It seems there might be an error in the given information or calculations. Please double-check the problem statement or provide additional information to resolve the issue.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili