
Из 27 учеников класса 15 занимаются спортом,а 18 музыкой. Некоторые из тех, которые занимаются и
музыкой и спортом ходят в театральный кружок. Какое наибольшее число ученников могут посещатьтеатральный кружок?

Ответы на вопрос




Calculating the Maximum Number of Students in the Drama Club
To calculate the maximum number of students that could be in the drama club, we can use the principle of inclusion-exclusion.
Given: - Total number of students in the class: 27 - Number of students involved in sports: 15 - Number of students involved in music: 18 - Some students are involved in both music and sports - We want to find the maximum number of students that could be in the drama club
Let's calculate step by step.
1. Total Students: 27 2. Students involved in sports: 15 3. Students involved in music: 18 4. Students involved in both music and sports: Unknown
Calculating the Maximum Number of Students in the Drama Club
To calculate the maximum number of students that could be in the drama club, we can use the principle of inclusion-exclusion.
Given: - Total number of students in the class: 27 - Number of students involved in sports: 15 - Number of students involved in music: 18 - Some students are involved in both music and sports - We want to find the maximum number of students that could be in the drama club
Let's calculate step by step.
1. Total Students: 27 2. Students involved in sports: 15 3. Students involved in music: 18 4. Students involved in both music and sports: Unknown
To find the maximum number of students that could be in the drama club, we can use the principle of inclusion-exclusion. This principle states that for three sets A, B, and C:
\[ \left| A \cup B \cup C \right| = \left| A \right| + \left| B \right| + \left| C \right| - \left| A \cap B \right| - \left| A \cap C \right| - \left| B \cap C \right| + \left| A \cap B \cap C \right| \]
Where: - \( \left| A \right| \) represents the number of students involved in sports - \( \left| B \right| \) represents the number of students involved in music - \( \left| C \right| \) represents the number of students in the drama club - \( \left| A \cap B \right| \) represents the number of students involved in both music and sports
Given: - \( \left| A \right| = 15 \) - \( \left| B \right| = 18 \) - \( \left| A \cap B \right| \) is unknown
We want to find the maximum value of \( \left| C \right| \).
Using the principle of inclusion-exclusion, we can calculate the maximum number of students that could be in the drama club.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili