Вопрос задан 20.02.2019 в 12:27. Предмет Математика. Спрашивает Романова Софья.

Найдите 2 корня уравнения |х-2|=6 и сделайте проверку

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Саркисова Виктория.
По определению предела
x-2=6 или -x+2=6
x=8            x=-4

Проверка:
При x = 8  |8-2|=6 
|6| = 6 верно => x = 6 - корень уравнения
При x = -4  |-4-2|=6 
|-6| = 6 верно => x = -4 - корень уравнения

Ответ: x1=6, x2=-4

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для начала решим уравнение |х-2|=6.

Рассмотрим два случая:

1) Х-2=6. В этом случае получаем уравнение Х=8.

2) Х-2=-6. В этом случае получаем уравнение Х=-4.

Таким образом, два корня уравнения |х-2|=6 равны 8 и -4.

Проверим найденные корни, подставив их в исходное уравнение:

Для корня 8: |8-2|=6. Получаем |6|=6, что верно.

Для корня -4: |-4-2|=6. Получаем |-6|=6, что также верно.

Таким образом, оба корня уравнения |х-2|=6 являются верными.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос