Вопрос задан 20.02.2019 в 01:16. Предмет Математика. Спрашивает Соленых Артем.

Машина ехала по шоссе 3 час, по проселочной дороге - 2 часа. Скорость по проселочной дороге была на

15 км/ч меньше, чем по шоссе. Общее расстояние, которое проехала машина - 270 км. Надо узнать с какой скоростью двигалась машина по шосее и по проселочной догоре. Нужны два способа решения
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Вильданова Сабина.

3(х+15)+ 2х=270

5х+45=270

5х=225

х=45 км/ч по просел

 

45+15=60км/ч по шоссе

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

To find the speed at which the car was traveling on the highway and on the dirt road, we need to solve a system of equations. Let's denote the speed on the highway as x km/h and the speed on the dirt road as y km/h. We are given the following information:

- The car traveled on the highway for 3 hours. - The car traveled on the dirt road for 2 hours. - The speed on the dirt road was 15 km/h less than the speed on the highway. - The total distance traveled by the car was 270 km.

We can set up the following equations based on the given information:

1. Equation 1: 3x (distance on the highway) + 2y (distance on the dirt road) = 270 km 2. Equation 2: y = x - 15 (speed on the dirt road is 15 km/h less than the speed on the highway)

We can solve this system of equations to find the values of x and y.

Solution 1: Substitution Method

We can solve the system of equations using the substitution method. Let's solve Equation 2 for y and substitute it into Equation 1:

Equation 1: 3x + 2(x - 15) = 270

Simplifying Equation 1:

3x + 2x - 30 = 270

5x - 30 = 270

5x = 300

x = 60

Substituting the value of x back into Equation 2 to find y:

y = 60 - 15

y = 45

Therefore, the car was traveling at a speed of 60 km/h on the highway and 45 km/h on the dirt road.

Solution 2: Elimination Method

We can also solve the system of equations using the elimination method. Let's multiply Equation 2 by 2 to make the coefficients of y in both equations the same:

Equation 1: 3x + 2y = 270

Equation 2: 2y = 2x - 30

Adding Equation 1 and Equation 2:

(3x + 2y) + (2x - 30) = 270 + (2x - 30)

Simplifying:

5x - 30 = 270 + 2x - 30

5x - 2x = 270

3x = 270

x = 90

Substituting the value of x back into Equation 2 to find y:

2y = 2(90) - 30

2y = 180 - 30

2y = 150

y = 75

Therefore, the car was traveling at a speed of 90 km/h on the highway and 75 km/h on the dirt road.

Summary

There are two ways to solve the problem:

1. Substitution Method: - The car was traveling at a speed of 60 km/h on the highway and 45 km/h on the dirt road.

2. Elimination Method: - The car was traveling at a speed of 90 km/h on the highway and 75 km/h on the dirt road.

Please let me know if you need any further assistance!

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос