
Машина ехала по шоссе 3 час, по проселочной дороге - 2 часа. Скорость по проселочной дороге была на
15 км/ч меньше, чем по шоссе. Общее расстояние, которое проехала машина - 270 км. Надо узнать с какой скоростью двигалась машина по шосее и по проселочной догоре. Нужны два способа решения

Ответы на вопрос

3(х+15)+ 2х=270
5х+45=270
5х=225
х=45 км/ч по просел
45+15=60км/ч по шоссе



Problem Analysis
To find the speed at which the car was traveling on the highway and on the dirt road, we need to solve a system of equations. Let's denote the speed on the highway as x km/h and the speed on the dirt road as y km/h. We are given the following information:- The car traveled on the highway for 3 hours. - The car traveled on the dirt road for 2 hours. - The speed on the dirt road was 15 km/h less than the speed on the highway. - The total distance traveled by the car was 270 km.
We can set up the following equations based on the given information:
1. Equation 1: 3x (distance on the highway) + 2y (distance on the dirt road) = 270 km 2. Equation 2: y = x - 15 (speed on the dirt road is 15 km/h less than the speed on the highway)
We can solve this system of equations to find the values of x and y.
Solution 1: Substitution Method
We can solve the system of equations using the substitution method. Let's solve Equation 2 for y and substitute it into Equation 1:Equation 1: 3x + 2(x - 15) = 270
Simplifying Equation 1:
3x + 2x - 30 = 270
5x - 30 = 270
5x = 300
x = 60
Substituting the value of x back into Equation 2 to find y:
y = 60 - 15
y = 45
Therefore, the car was traveling at a speed of 60 km/h on the highway and 45 km/h on the dirt road.
Solution 2: Elimination Method
We can also solve the system of equations using the elimination method. Let's multiply Equation 2 by 2 to make the coefficients of y in both equations the same:Equation 1: 3x + 2y = 270
Equation 2: 2y = 2x - 30
Adding Equation 1 and Equation 2:
(3x + 2y) + (2x - 30) = 270 + (2x - 30)
Simplifying:
5x - 30 = 270 + 2x - 30
5x - 2x = 270
3x = 270
x = 90
Substituting the value of x back into Equation 2 to find y:
2y = 2(90) - 30
2y = 180 - 30
2y = 150
y = 75
Therefore, the car was traveling at a speed of 90 km/h on the highway and 75 km/h on the dirt road.
Summary
There are two ways to solve the problem:1. Substitution Method: - The car was traveling at a speed of 60 km/h on the highway and 45 km/h on the dirt road.
2. Elimination Method: - The car was traveling at a speed of 90 km/h on the highway and 75 km/h on the dirt road.
Please let me know if you need any further assistance!


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili