Вопрос задан 17.02.2019 в 01:35. Предмет Математика. Спрашивает Конева Полина.

Как найти площадь всей фигуры ,зная площади всех её частей ?

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ларионов Ваня.
Сложить все площади)))
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Finding the Area of a Figure Given the Areas of its Parts

To find the area of an entire figure when you know the areas of its individual parts, you need to add up the areas of all the parts. The specific method for finding the total area will depend on the shape and arrangement of the parts.

Here are some general steps you can follow:

1. Identify the individual parts of the figure for which you know the areas. 2. Determine the shape and dimensions of each part. 3. Use the appropriate formula to calculate the area of each part. 4. Add up the areas of all the parts to find the total area of the figure.

Let's look at a few examples to illustrate this process.

Example 1: Finding the Area of a Composite Figure

Suppose you have a composite figure made up of a rectangle and a triangle. The rectangle has a length of 6 units and a width of 4 units, while the triangle has a base of 5 units and a height of 3 units. You know that the area of the rectangle is 24 square units and the area of the triangle is 7.5 square units.

To find the total area of the figure, you would calculate the area of the rectangle and the area of the triangle separately, and then add them together:

- Area of the rectangle: length × width = 6 units × 4 units = 24 square units. - Area of the triangle: (base × height) / 2 = (5 units × 3 units) / 2 = 7.5 square units.

Total area of the figure: 24 square units + 7.5 square units = 31.5 square units.

Example 2: Finding the Area of a Complex Figure

Now let's consider a more complex figure made up of multiple shapes. Suppose you have a figure consisting of a rectangle, a semicircle, and a trapezoid. The rectangle has a length of 8 units and a width of 4 units, the semicircle has a radius of 3 units, and the trapezoid has a height of 2 units, a top base of 5 units, and a bottom base of 9 units. You know that the area of the rectangle is 32 square units, the area of the semicircle is 4.5π square units (approximately 14.14 square units), and the area of the trapezoid is 7 square units.

To find the total area of the figure, you would calculate the area of each shape separately, and then add them together:

- Area of the rectangle: length × width = 8 units × 4 units = 32 square units. - Area of the semicircle: (π × radius^2) / 2 = (π × 3^2) / 2 = 4.5π square units (approximately 14.14 square units). - Area of the trapezoid: ((top base + bottom base) / 2) × height = ((5 units + 9 units) / 2) × 2 units = 7 square units.

Total area of the figure: 32 square units + 14.14 square units + 7 square units = 53.14 square units (approximately).

Remember, these are just examples to illustrate the process. The specific method for finding the total area will depend on the shape and arrangement of the parts in the figure you are working with.

I hope this helps! Let me know if you have any further questions.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос