
В коробке 5 синих, 4 красных и 3 зеленых карандаша. Наудачу вынимают 3 карандаша. Какова
вероятность того, что все они синие?

Ответы на вопрос

2) 5:12=0,416...,т.е. примерно 42%



Calculating the Probability of Drawing 3 Blue Pencils
To calculate the probability of drawing 3 blue pencils out of the total 12 pencils, we can use the formula for probability:
Probability = (Favorable Outcomes) / (Total Outcomes)
In this case, the favorable outcomes are drawing 3 blue pencils, and the total outcomes are drawing any 3 pencils from the box.
Total Number of Outcomes
The total number of ways to draw 3 pencils from the box can be calculated using the combination formula:Total Outcomes = nCr = n! / (r! * (n-r)!)
Where: - n = total number of pencils in the box - r = number of pencils to be drawn
For this scenario, n = 12 (total pencils) and r = 3 (pencils to be drawn).
Favorable Outcomes
The favorable outcomes are drawing 3 blue pencils from the box. Since there are 5 blue pencils in the box, we can calculate the number of ways to draw 3 blue pencils.Calculation
Let's calculate the probability step by step:1. Total Outcomes: Using the combination formula, we can calculate the total number of ways to draw 3 pencils from 12: Total Outcomes = 12C3 = 12! / (3! * (12-3)!)
2. Favorable Outcomes: The number of ways to draw 3 blue pencils from 5: Favorable Outcomes = 5C3 = 5! / (3! * (5-3)!)
3. Probability: Finally, we can calculate the probability using the formula: Probability = Favorable Outcomes / Total Outcomes
Let's calculate the probability using the above steps.



Problem Analysis
In a box, there are 5 blue pencils, 4 red pencils, and 3 green pencils. We randomly select 3 pencils from the box. We need to determine the probability that all 3 selected pencils are blue.Solution
To find the probability, we need to calculate the ratio of the number of favorable outcomes (selecting 3 blue pencils) to the total number of possible outcomes (selecting any 3 pencils).The total number of pencils in the box is 5 + 4 + 3 = 12.
The number of ways to select 3 blue pencils from the 5 available blue pencils is given by the combination formula:
C(n, k) = n! / (k! * (n - k)!)
Where: - n is the total number of items (5 blue pencils) - k is the number of items to be selected (3 blue pencils)
Using this formula, we can calculate the number of ways to select 3 blue pencils from the 5 available blue pencils.
C(5, 3) = 5! / (3! * (5 - 3)!) = 10
Therefore, there are 10 ways to select 3 blue pencils from the 5 available blue pencils.
The total number of ways to select any 3 pencils from the 12 pencils in the box is given by the combination formula:
C(12, 3) = 12! / (3! * (12 - 3)!) = 220
Therefore, there are 220 ways to select any 3 pencils from the 12 pencils in the box.
The probability of selecting 3 blue pencils can be calculated as:
Probability = Number of favorable outcomes / Total number of possible outcomes
Probability = 10 / 220 = 1 / 22
Therefore, the probability that all 3 selected pencils are blue is 1/22.
Conclusion
The probability that all 3 selected pencils are blue is 1/22.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili