
Вопрос задан 24.04.2018 в 23:44.
Предмет Математика.
Спрашивает Раю Илья.
Записать формулу для производной н-ого порядка указанной функции



Ответы на вопрос

Отвечает Асадчих Артём.
Y = ln(5 + x^2)
y ' = 1/(5 + x^2)*2x = 2x/(5 + x^2)
y '' = [2(5+x^2) - 2x*2x]/(5+x^2)^2 = (10-2x^2)/(5+x^2)^2
Получается, что n-ая производная
y^(n) = (-1)^(n-1)*f(x)/(5+x^2)^n
А вот вид функции f(x) в числителе определить в общем виде не удается.
Функции в производных по номерам такие:
1) 2x
2) 10 - 2x^2 = -2(x^2 - 5)
3) 4x^3 - 60x = 4(x^3 - 15x)
4) -(12x^4 - 360x^2 + 300) = -12(x^4 - 30x^2 + 25)
Что будет дальше - я даже предположить боюсь.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili