Вопрос задан 15.01.2019 в 19:24. Предмет Математика. Спрашивает Персидская Ульяна.

помогите решить, пожалуйста*сфера проходит через вершины квадрата ABCD сторона которого равна 12

см. Найдите расстояние от центра сферы - точки o до плоскости квадрата если радиус OD образует с плоскостью квадрата угол, равный 60
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Страмков Слава.
Так как все точки квадрата лежат на сфере, то они равноудалены от точки О. Значит пирамида ОABCD - правильная, О - ее вершина. Тогда проекция О на плоскость ABCD - точка пересечения диагоналей (обозначим ее точкой Н).
ОН - искомое расстояние. Проекция OD на плоскость квадрата - отрезок DH, значит угол ODH = 60 градусов. DH - половина диагонали квадрата (вся диагональ равна 12 корней из 2), то есть DH = 6 корней из 2.
tg(ODH) = OH/DH, OH = DH*tg(OGH) = (6 корней из 2)*(тангенс 60 градусов) = (6 корней из 2)*(корень из 3) = 6 корней из 6.

Ответ:  6\sqrt{6}
0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос