Вопрос задан 02.01.2019 в 10:28. Предмет Математика. Спрашивает Кващук Лиза.

Теория вероятностей и статистика Напишите именно решение: В партии из 15 деталей 3 бракованных.

Покупатель приобрел 5 деталей. Найдите вероятность того, что среди них: - есть хотя бы одна бракованная - 3 бракованные детали - 2 бракованные детали Сами ответы есть в конце учебника, но решение не могу подобрать. Помогите с решением пожалуйста.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Агатов Павел.
Обозначение: C из N по M = N!/[M!*(N - M)!] - число сочетаний из N по M (не могу найти здесь мощного матредактора, поэтому так обозначил).
1) событие А есть хотя бы одна бракованная
противоположное событие (не А) - нет ни одной бракованной , т.е. все стандартные.
 (СТ = 15-3=12 - число стандартных)
n = С из 15 по 5 - число всех элементарных исходов
m = С из 12 по 5 - число благоприятствующих событию исходов
Р(_А) = m/n = [С из 12 по 5]/[С из 15 по 5]
Р(А) = 1 - Р(_А)

3) m = [С из 3 по 2] * [С из 12 по 3] 
2 бракованные из 3-х бракованных можно выбрать [С из 3 по 2] способами
но к каждому из этих способов можно добавить 3 Стандартных из 12-ти стандартных [С из 12 по 3], т.е. перемножаем основное комбинаторное правило умножения
2) m = [С из 3 по 3]*[С из 12 по 2] - аналогично
Советую посмотреть В.Е. Гмурман "Теория вероятностей и математическая статистика" глава 1 § Примеры непосредственного вычисления вероятностей, пример 4 - это стандартная задача. Рекомендую также найти Гмурман "Руководство к решению задач по теории вероятностей и матем. статистике"

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос