
Вопрос задан 15.11.2018 в 00:08.
Предмет Математика.
Спрашивает Климкина Виолетта.
ПОЖАЛУЙСТА, ОЧЕНЬ СРОЧНО НАДО! Доказать, что функция F(x) = e^2x + cosx + x является первообразной
функции f(x) =2e^2x- sinx + 1 на всей числовой оси. Если можно, то подробно)))

Ответы на вопрос

Отвечает Митрофанов Даня.
Доказать просто нужно найти производную от функции F(x) ведь это первообразная. Если функции совпадут (а они должны совпасть ) то всё верно. Тогда находим производную
F(x)=e^2x+cosx+x
F'(x)=2e^2x-sinx+1 равна f(x)=2e^2x-sinx+1 следовательно F(x) является первообразной для f(x)
F(x)=e^2x+cosx+x
F'(x)=2e^2x-sinx+1 равна f(x)=2e^2x-sinx+1 следовательно F(x) является первообразной для f(x)


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili