Вопрос задан 10.11.2018 в 04:28. Предмет Математика. Спрашивает Белоброва Алина.

Длина стороны квадрата 4,8 см, а одной из сторон прямоугольника-2,13 см. Сравните площади

прямоугольника и квадрата,если периметр прямоугольника равен 24,26см.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Акын Дана.
Площадь квадрата: 4,8*4,8=23,04
Другая сторона прямоугольника: 24,26/2-2,13=10, тогда площадь прямоугольника: 2,13*10=21,3
Площадь квадрата на 1,74 больше площади прямоугольника( и составляет 1,081 площади квадрата).
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для начала, найдем площадь квадрата. Площадь квадрата вычисляется по формуле S = a^2, где a - длина стороны квадрата.

В данном случае, длина стороны квадрата a = 4.8 см, поэтому площадь квадрата равна S = 4.8^2 = 23.04 см^2.

Теперь найдем площадь прямоугольника. Площадь прямоугольника вычисляется по формуле S = a * b, где a и b - длины сторон прямоугольника.

Из условия известно, что одна из сторон прямоугольника равна 2.13 см, а периметр прямоугольника равен 24.26 см. Периметр прямоугольника равен сумме длин всех его сторон, поэтому a + b + a + b = 2a + 2b = 24.26.

Так как одна из сторон прямоугольника равна 2.13 см, то 2а + 2б = 2*2.13 + 2b = 4.26 + 2b = 24.26. Отсюда получаем, что 2b = 24.26 - 4.26 = 20, а b = 20 / 2 = 10 см.

Таким образом, площадь прямоугольника равна S = 2.13 * 10 = 21.3 см^2.

Сравнивая площади прямоугольника и квадрата, мы видим, что площадь квадрата (23.04 см^2) больше, чем площадь прямоугольника (21.3 см^2).

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос