Вопрос задан 22.10.2018 в 16:53. Предмет Математика. Спрашивает Микитчин Наталя.

В ящике лежат 3 белых и 3 чёрных шара.Наугад вынимают 2 шара.Какое событие более вероятное:вынутые

шары одинакового или разного цвета?Попробуйте сначала сделать прикидку ответа,не вычисляя вероятностей,а затем вычислите вероятности указанных событий и сравни их.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Шабалина Наташа.
Наверняка разные шары выйдят
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для ответа на данный вопрос можно использовать метод прикидки и логические рассуждения без вычисления вероятностей.

Если при вынимании 2-х шаров вероятность вытащить шары одного цвета больше, то событие "вынутые шары одинакового цвета" будет более вероятным.

Мы знаем, что в ящике по 3 белых и 3 черных шара. При первой вытаскивании любого шара вероятность вытащить белый или черный шар равна 3/6 или 1/2.

Пусть мы вытащили белый шар первым. Теперь вероятность вытащить еще один белый шар равна 2/5, так как в ящике осталось 2 белых и 3 черных шара. Вероятность вытащить черный шар будет равна 3/5. Поскольку 2/5 больше, чем 1/2, то при условии, что первый шар был белым, вероятность вытащить еще один белый шар будет больше.

Аналогично поступаем, если первый шар был черным. Вероятность вытащить еще один черный шар будет 2/5, что больше, чем 1/2.

Таким образом, прикидкой можно сказать, что событие "вынутые шары одинакового цвета" более вероятно.

Теперь вычислим вероятности указанных событий. Вероятность вынуть два шара одного цвета можно подсчитать следующим образом:

1) Вероятность первого шара - выбрать любой из 6 доступных шаров из всех шести шаров в ящике: 6/6 = 1. 2) Вероятность второго шара - выбрать шар того же цвета, что и первым шаром, что выполняется в двух случаях: или оба белых или оба черных. Вероятность выбрать такой шар будет 2/5.

Таким образом, вероятность вынуть два шара одного цвета равна 1 * 2/5 = 2/5.

Вероятность вынуть два шара разного цвета может быть рассчитана следующим образом:

1) Вероятность первого шара - выбрать любой из 6 доступных шаров из всех шести шаров в ящике: 6/6 = 1. 2) Вероятность второго шара - выбрать шар другого цвета, чего можно сделать в трех случаях (белый-черный, черный-белый или черный-белый). Вероятность выбрать такой шар будет 3/5.

Таким образом, вероятность вынуть два шара разного цвета равна 1 * 3/5 = 3/5.

Сравнивая эти две вероятности, видно, что вероятность вынуть два шара разного цвета (3/5) больше, чем вероятность вынуть два шара одного цвета (2/5). Следовательно, событие "вынутые шары разного цвета" более вероятно.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос