
Из двух поселков выехали одновременно навстречу друг другу велосипедист и мотоциклист. Они
встретились через 40 мин . Сколько времени был в пути до встречи каждый из них ?

Ответы на вопрос







Предположим, что велосипедист ехал со скоростью V1, а мотоциклист — со скоростью V2.
Расстояние между поселками, которое каждый из них должен преодолеть, равно сумме расстояний, которые они проедут за 40 минут до встречи.
Расстояние, проеханное велосипедистом равно времени, умноженному на скорость: V1 * (40/60) = (2/3) * V1.
Расстояние, проеханное мотоциклистом равно времени, умноженному на скорость: V2 * (40/60) = (2/3) * V2.
Так как они двигаются навстречу друг другу, то сумма расстояний, которые они проедут, равна расстоянию между поселками: (2/3) * V1 + (2/3) * V2.
По условию они встретились через 40 минут, что значит, что они одновременно проехали расстояние между поселками. Обозначим это расстояние как D.
Таким образом, имеем уравнение: (2/3) * V1 + (2/3) * V2 = D.
Ответом на задачу будут времена, которые были в пути до встречи каждого из них: (2/3) * V1 и (2/3) * V2.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili