Вопрос задан 13.10.2018 в 02:57. Предмет Математика. Спрашивает Романова Софья.

Помогите, пожалуйста решить!)))) От трёх коров надоили 35 литров молока. От первой на 3 литра

молока больше ,чем от второй ,а масса молока от третей составляет 1,2 от массы молока от второй. Спрашивается: сколько литров молока надоили от каждой коровы?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кириенко Михаил.
Пусть от второй коровы надоили х литров молока. Тогда от первой - (х+3) литра, а от третьей - 1,2х литров. Вместе от трех коров надоили (х+х+3+1,2х) литров молока. По условию это равно 35 литров. Составляем уравнение:
х+х+3+1,2х=35
3,2х+3=35
3,2х=32
х=32:3,2
х=10 литров - молока надоили от второй коровы.
10+3=13 литров - молока надоили от первой коровы.
10*1,2=12 литров - молока надоили от третьей коровы.
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We have three cows that produced a total of 35 liters of milk. The first cow produced 3 liters more than the second cow, and the third cow's milk mass is 1.2 times the mass of the second cow's milk. We need to find out how much milk each cow produced.

Solution

Let's assume the amount of milk produced by the second cow is x liters.

According to the problem, the first cow produced 3 liters more than the second cow, so the amount of milk produced by the first cow is x + 3 liters.

The mass of the third cow's milk is 1.2 times the mass of the second cow's milk. Since mass is directly proportional to volume, we can assume that the mass of the milk is proportional to the volume of the milk. Therefore, the mass of the third cow's milk is also 1.2 times the mass of the second cow's milk.

Now, let's solve the problem using the given information.

Calculation

Let's assume the amount of milk produced by the second cow is x liters.

According to the problem, the first cow produced 3 liters more than the second cow, so the amount of milk produced by the first cow is x + 3 liters.

The mass of the third cow's milk is 1.2 times the mass of the second cow's milk. Since mass is directly proportional to volume, we can assume that the mass of the milk is proportional to the volume of the milk. Therefore, the mass of the third cow's milk is also 1.2 times the mass of the second cow's milk.

We know that the total amount of milk produced by all three cows is 35 liters. Therefore, we can write the equation:

x + (x + 3) + 1.2x = 35

Simplifying the equation:

3.2x + 3 = 35

3.2x = 32

x = 10

So, the second cow produced 10 liters of milk.

The first cow produced 3 liters more than the second cow, so the first cow produced 10 + 3 = 13 liters of milk.

The third cow's milk mass is 1.2 times the mass of the second cow's milk, so the third cow produced 1.2 * 10 = 12 liters of milk.

Answer

Therefore, the amount of milk produced by each cow is as follows: - The first cow produced 13 liters of milk. - The second cow produced 10 liters of milk. - The third cow produced 12 liters of milk.

I hope this helps! Let me know if you have any further questions.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос