Вопрос задан 14.09.2018 в 23:56. Предмет Математика. Спрашивает Дикманов Дима.

Найти общее решение дифференциальных уравнений: (y - 1)²dx + (1 - x)³dy = 0 Решить задачу Коши:

sin xdx + dy/√y = 0 ; y(0) = 1 Найти общее решение линейного дифференциального уравнения: y' + 2xy = xe ^-x² Прошу с решением,дабы понять принцип,как это решать
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Вольнов Влад.
1)\; \; \; (y-1)^2dx+(1-x)^3dy=0\\\\(y-1)^2dx=-(1-x)^3dy\; \; \; \Rightarrow \; \; \;  \int \frac{dx}{-(1-x)^3} =\int \frac{dy}{(y-1)^2} \\\\-\int (1-x)^{-3}dx=\int (y-1)^{-2}dy\\\\+\frac{(1-x)^{-2}}{-2}=\frac{(y-1)^{-1}}{-1}+C\\\\-\frac{1}{2(1-x)^2}=-\frac{1}{y-1}+C\\\\2)\; \; sinx\cdot dx+\frac{dy}{\sqrt{y}}=0\; ,\; \; \; y(0)=1\\\\\int sinx\cdot dx=-\int \frac{dy}{\sqrt{y}}\\\\-cosx=-2\sqrt{y}+C\; \; \to \; \; \sqrt{y}=\frac{cosx+C}{2}\; ,\\\\y=\frac{1}{4}(cosx+C)^2\; \; -\; \; obshee\; reshenie

y(0)=1\; ,\; \; \sqrt1=\frac{cos0+C}{2}\; ,\; \; 2=1+C\; ,\; \; C=1\\\\y=\frac{1}{4}(cosx+1)\; \; -\; \; chastnoe\; reshenie\\\\3)\; \; y'+2xy=xe^{-x^2}\\\\y=uv\; ,\; y'=u'v+uv'\\\\u'v+uv'+2xuv=xe^{-x^2}\\\\u'v+u(\underbrace {v'+2xv}_{0})=xe^{-x^2}\\\\1)\; \; \frac{dv}{dx}+2xv=0\; ,\; \;  \frac{dv}{v}=-2 x\, dx\\\\\int \frac{dv}{v}=-2\int x\, dx\; \; \; \to \; \; lnv=-x^2\; \; \to \; \; v=e^{-x^2}

2)\; \; u'\cdot e^{-x^2}=xe^{-x^2}\\\\\frac{du}{dx}=x\; \; \to \; \; \int du=\int x\, dx\; \; \to \; \; u=\frac{x^2}{2}+C

3)\; \; y=uv=e^{-x^2}\cdot (\frac{x^2}{2}+C)
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Solving the Differential Equations

To find the general solution for the given differential equations, we will go through each equation one by one.

# Equation 1: (y - 1)²dx + (1 - x)³dy = 0

To solve this equation, we can use the method of exact differential equations. For a differential equation to be exact, the following condition must be satisfied:

∂M/∂y = ∂N/∂x

where M and N are the coefficients of dx and dy, respectively.

In this case, M = (y - 1)² and N = (1 - x)³. Let's check if the condition is satisfied:

∂M/∂y = 2(y - 1) ∂N/∂x = -3(1 - x)²

Since ∂M/∂y is not equal to ∂N/∂x, the equation is not exact. However, we can make it exact by multiplying the entire equation by an integrating factor.

Let's find the integrating factor (IF): IF = e^(∫(∂M/∂y - ∂N/∂x)dx) = e^(∫(2(y - 1) + 3(1 - x)²)dx) = e^(2xy - 2x + y - x³ + x² + C₁)

Multiplying the given equation by the integrating factor, we get: (e^(2xy - 2x + y - x³ + x² + C₁))((y - 1)²dx + (1 - x)³dy) = 0

Expanding and simplifying the equation, we have: (y - 1)²e^(2xy - 2x + y - x³ + x² + C₁)dx + (1 - x)³e^(2xy - 2x + y - x³ + x² + C₁)dy = 0

This equation is now exact. We can find the solution by integrating both sides with respect to x and y, respectively.

Integrating the left side with respect to x, we get: ∫((y - 1)²e^(2xy - 2x + y - x³ + x² + C₁))dx = F(x, y)

Integrating the right side with respect to y, we get: ∫((1 - x)³e^(2xy - 2x + y - x³ + x² + C₁))dy = G(x, y)

Where F(x, y) and G(x, y) are the arbitrary functions of integration.

The general solution for the given differential equation is: F(x, y) = G(x, y)

# Equation 2: sin(x)dx + dy/√y = 0, y(0) = 1

To solve this equation, we can separate the variables and integrate.

Rearranging the equation, we have: dy/√y = -sin(x)dx

Integrating both sides, we get: ∫dy/√y = -∫sin(x)dx

Integrating the left side gives: 2√y = -cos(x) + C₂

Squaring both sides, we have: 4y = cos²(x) - 2cos(x)C₂ + C₂²

Since y(0) = 1, we can substitute x = 0 and y = 1 into the equation to find the value of C₂: 4(1) = cos²(0) - 2cos(0)C₂ + C₂² 4 = 1 - 2C₂ + C₂² 3 = -2C₂ + C₂² C₂² - 2C₂ + 3 = 0 (C₂ - 1)(C₂ - 3) = 0

Therefore, C₂ = 1 or C₂ = 3.

Substituting the values of C₂ back into the equation, we have two possible solutions: 1) 4y = cos²(x) - 2cos(x) + 1 2) 4y = cos²(x) - 2cos(x) + 3

These are the general solutions for the given differential equation.

# Equation 3: y' + 2xy = xe^(-x²)

This is a linear differential equation. To solve it, we can use an integrating factor.

The integrating factor (IF) is given by: IF = e^(∫2xdx) = e^(x²)

Multiplying the given equation by the integrating factor, we get: e^(x²)(y' + 2xy) = xe^(-x²)e^(x²) e^(x²)(y' + 2xy) = x

Simplifying the equation, we have: e^(x²)y' + 2x^2y = x

This equation is now in a form that can be solved using the integrating factor. Let's denote the integrating factor as IF.

Multiplying the equation by the integrating factor, we get: e^(x²)(e^(x²)y' + 2x^2y) = xe^(x²)

Expanding and simplifying the equation, we have: (e^(2x²)y' + 2x^2e^(x²)y) = xe^(x²)

Now, we can integrate both sides of the equation with respect to x.

∫(e^(2x²)y' + 2x^2e^(x²)y)dx = ∫(xe^(x²))dx

Integrating the left side gives: ∫(e^(2x²)y' + 2x^2e^(x²)y)dx = y*e^(2x²) + C₃

Integrating the right side gives: ∫(xe^(x²))dx = ∫(e^(x²))d(x²) = ∫(e^(x²))2xdx = ∫(2xe^(x²))dx = e^(x²) + C₄

Where C₃ and C₄ are the arbitrary constants of integration.

Therefore, the general solution for the given linear differential equation is: y*e^(2x²) + C₃ = e^(x²) + C₄

Simplifying the equation, we have: y*e^(2x²) = e^(x²) + C₄ - C₃

Let's denote C as the difference between C₄ and C₃: C = C₄ - C₃

The general solution can be written as: y = (e^(x²) + C)e^(-2x²)

This is the general solution for the given linear differential equation.

I hope this helps! Let me know if you have any further questions.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос