Найти общее решение дифференциальных уравнений: (y - 1)²dx + (1 - x)³dy = 0 Решить задачу Коши:
sin xdx + dy/√y = 0 ; y(0) = 1 Найти общее решение линейного дифференциального уравнения: y' + 2xy = xe ^-x² Прошу с решением,дабы понять принцип,как это решатьОтветы на вопрос
Solving the Differential Equations
To find the general solution for the given differential equations, we will go through each equation one by one.
# Equation 1: (y - 1)²dx + (1 - x)³dy = 0
To solve this equation, we can use the method of exact differential equations. For a differential equation to be exact, the following condition must be satisfied:
∂M/∂y = ∂N/∂x
where M and N are the coefficients of dx and dy, respectively.
In this case, M = (y - 1)² and N = (1 - x)³. Let's check if the condition is satisfied:
∂M/∂y = 2(y - 1) ∂N/∂x = -3(1 - x)²
Since ∂M/∂y is not equal to ∂N/∂x, the equation is not exact. However, we can make it exact by multiplying the entire equation by an integrating factor.
Let's find the integrating factor (IF): IF = e^(∫(∂M/∂y - ∂N/∂x)dx) = e^(∫(2(y - 1) + 3(1 - x)²)dx) = e^(2xy - 2x + y - x³ + x² + C₁)
Multiplying the given equation by the integrating factor, we get: (e^(2xy - 2x + y - x³ + x² + C₁))((y - 1)²dx + (1 - x)³dy) = 0
Expanding and simplifying the equation, we have: (y - 1)²e^(2xy - 2x + y - x³ + x² + C₁)dx + (1 - x)³e^(2xy - 2x + y - x³ + x² + C₁)dy = 0
This equation is now exact. We can find the solution by integrating both sides with respect to x and y, respectively.
Integrating the left side with respect to x, we get: ∫((y - 1)²e^(2xy - 2x + y - x³ + x² + C₁))dx = F(x, y)
Integrating the right side with respect to y, we get: ∫((1 - x)³e^(2xy - 2x + y - x³ + x² + C₁))dy = G(x, y)
Where F(x, y) and G(x, y) are the arbitrary functions of integration.
The general solution for the given differential equation is: F(x, y) = G(x, y)
# Equation 2: sin(x)dx + dy/√y = 0, y(0) = 1
To solve this equation, we can separate the variables and integrate.
Rearranging the equation, we have: dy/√y = -sin(x)dx
Integrating both sides, we get: ∫dy/√y = -∫sin(x)dx
Integrating the left side gives: 2√y = -cos(x) + C₂
Squaring both sides, we have: 4y = cos²(x) - 2cos(x)C₂ + C₂²
Since y(0) = 1, we can substitute x = 0 and y = 1 into the equation to find the value of C₂: 4(1) = cos²(0) - 2cos(0)C₂ + C₂² 4 = 1 - 2C₂ + C₂² 3 = -2C₂ + C₂² C₂² - 2C₂ + 3 = 0 (C₂ - 1)(C₂ - 3) = 0
Therefore, C₂ = 1 or C₂ = 3.
Substituting the values of C₂ back into the equation, we have two possible solutions: 1) 4y = cos²(x) - 2cos(x) + 1 2) 4y = cos²(x) - 2cos(x) + 3
These are the general solutions for the given differential equation.
# Equation 3: y' + 2xy = xe^(-x²)
This is a linear differential equation. To solve it, we can use an integrating factor.
The integrating factor (IF) is given by: IF = e^(∫2xdx) = e^(x²)
Multiplying the given equation by the integrating factor, we get: e^(x²)(y' + 2xy) = xe^(-x²)e^(x²) e^(x²)(y' + 2xy) = x
Simplifying the equation, we have: e^(x²)y' + 2x^2y = x
This equation is now in a form that can be solved using the integrating factor. Let's denote the integrating factor as IF.
Multiplying the equation by the integrating factor, we get: e^(x²)(e^(x²)y' + 2x^2y) = xe^(x²)
Expanding and simplifying the equation, we have: (e^(2x²)y' + 2x^2e^(x²)y) = xe^(x²)
Now, we can integrate both sides of the equation with respect to x.
∫(e^(2x²)y' + 2x^2e^(x²)y)dx = ∫(xe^(x²))dx
Integrating the left side gives: ∫(e^(2x²)y' + 2x^2e^(x²)y)dx = y*e^(2x²) + C₃
Integrating the right side gives: ∫(xe^(x²))dx = ∫(e^(x²))d(x²) = ∫(e^(x²))2xdx = ∫(2xe^(x²))dx = e^(x²) + C₄
Where C₃ and C₄ are the arbitrary constants of integration.
Therefore, the general solution for the given linear differential equation is: y*e^(2x²) + C₃ = e^(x²) + C₄
Simplifying the equation, we have: y*e^(2x²) = e^(x²) + C₄ - C₃
Let's denote C as the difference between C₄ and C₃: C = C₄ - C₃
The general solution can be written as: y = (e^(x²) + C)e^(-2x²)
This is the general solution for the given linear differential equation.
I hope this helps! Let me know if you have any further questions.
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
