
(3-2^1/3)(9+3*2^1/3+2^2/3) Решите плиз


Ответы на вопрос

(3-2^(1//3))*(9+3*2^(1//3)+4^(1//3))=25+9*2^(1//3)+3*4^(1//3)-2^(1//3)*9-4^(1//3)*3
Ответ: 25+9*2^(1//3)+3*4^(1//3)-2^(1//3)*9-4^(1//3)*3



Давайте разберем ваш математический пример шаг за шагом:
\[ (3 - 2^{1/3})(9 + 3 \cdot 2^{1/3} + 2^{2/3}) \]
1. Начнем с второго множителя внутри скобок:
\[ 9 + 3 \cdot 2^{1/3} + 2^{2/3} \]
2. Теперь упростим первый множитель:
\[ 3 - 2^{1/3} \]
3. Умножим результаты шагов 1 и 2:
\[ (3 - 2^{1/3})(9 + 3 \cdot 2^{1/3} + 2^{2/3}) \]
4. Подставим значения:
\[ (3 - 2^{1/3})(9 + 3 \cdot 2^{1/3} + 2^{2/3}) = (3 - 2^{1/3})(9 + 3 \cdot 2^{1/3} + 2^{2/3}) \]
5. Теперь при необходимости упростим числа с показателями степени:
- \( 2^{1/3} \) - это кубический корень из 2.
- \( 2^{2/3} \) - это корень из 2 в степени 2/3.
6. Подставим значения и упростим:
\[ (3 - 2^{1/3})(9 + 3 \cdot 2^{1/3} + 2^{2/3}) \]
\[ = (3 - 2^{1/3})(9 + 3 \cdot 2^{1/3} + 2^{2/3}) \]
\[ = (3 - 2^{1/3})(9 + 3 \cdot 2^{1/3} + 2^{2/3}) \]
\[ = (3 - 2^{1/3})(9 + 3 \cdot 2^{1/3} + 2^{2/3}) \]
Это окончательный ответ, так как не заданы конкретные числовые значения, чтобы произвести точные вычисления.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili