Вопрос задан 25.08.2018 в 21:53. Предмет Математика. Спрашивает Епанов Егор.

Первый пешеход был в пути 4 часа а второй 7 часов причем во второй день он прошел на 156 км больше

чем в первый. какой путь он прошел в третий день если был в пути 6 часов и его скорасть не изменялось?
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Кончаков Егор.
7-4= 3 ч больше прошел во 2-й день
156:3=52 км/ч скорость
52*6= 312 км прошел в 3-й день
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

We are given that the first pedestrian was on the road for 4 hours and the second pedestrian was on the road for 7 hours. On the second day, the second pedestrian walked 156 km more than the first pedestrian. We need to find out how far the second pedestrian walked on the third day, assuming they were on the road for 6 hours and their speed remained constant.

Solution

To solve this problem, we can use the formula: distance = speed × time.

Let's assume the speed of the first pedestrian is x km/h and the speed of the second pedestrian is y km/h.

From the given information, we can form the following equations:

1. For the first pedestrian: distance1 = x × 4 2. For the second pedestrian: distance2 = y × 7 3. On the second day: distance2 = distance1 + 156 4. On the third day: distance3 = y × 6

We can solve these equations to find the values of x and y and then calculate the distance walked by the second pedestrian on the third day.

Solution Steps

1. Let's start by solving equations 1 and 2 to find the values of x and y. - From equation 1: distance1 = 4x - From equation 2: distance2 = 7y

2. We are given that on the second day, the second pedestrian walked 156 km more than the first pedestrian. So, we can form equation 3 as follows: - distance2 = distance1 + 156 - 7y = 4x + 156

3. Now, we can solve equations 1 and 3 simultaneously to find the values of x and y. - 4x = 7y - 156

4. Finally, we can substitute the value of y into equation 4 to find the distance walked by the second pedestrian on the third day. - distance3 = y × 6

Let's calculate the solution step by step.

Solution Steps

1. Let's start by solving equations 1 and 2 to find the values of x and y. - From equation 1: distance1 = 4x - From equation 2: distance2 = 7y

Since we don't have the values of distance1 and distance2, we cannot directly solve for x and y.

2. We are given that on the second day, the second pedestrian walked 156 km more than the first pedestrian. So, we can form equation 3 as follows: - distance2 = distance1 + 156 - 7y = 4x + 156

Again, we don't have the values of distance1 and distance2, so we cannot directly solve for x and y.

3. Now, let's consider the information given on the third day. We are told that the second pedestrian was on the road for 6 hours and their speed did not change. So, we can form equation 4 as follows: - distance3 = y × 6

We can solve equation 4 to find the distance walked by the second pedestrian on the third day.

Calculation

Let's calculate the distance walked by the second pedestrian on the third day.

Given: - The second pedestrian was on the road for 6 hours. - The speed of the second pedestrian did not change.

From equation 4, we have: - distance3 = y × 6

Since we don't have the value of y, we cannot calculate the distance walked by the second pedestrian on the third day.

Unfortunately, without the values of distance1 and distance2 or the speed of the second pedestrian, we cannot determine the distance walked by the second pedestrian on the third day.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос