
Первая труба может наполнить бассейн за 24 мин а вторая за 40мин за сколько наполнят бассейн эти 2
трубы если их включить одновременно

Ответы на вопрос

2) 1 : 40 = 1/40 - заполнит вторая труба за 1 мин.
3) 1/24 + 1/40 = 5/120 + 3/120 = 8/120 = 1/15 - заполнят обе трубы за 1 мин.
4) 1 : 1/15 = 15 мин. - за столько заполнят бассейн обе трубы.



Бассейн у нас один, так и будет = 1.
1) V1 = Б/t1 = 1 (басс) : 24 (мин) = 1/24 (басс/мин) - скорость первой трубы
2) V2 = 1 (басс) : 40 (мин) = 1/40 (басс/мин) - скорость второй трубы.
Включаем их одновременно
3) Vc = V1 + V2 = 1/24 + 1/40 = 1/15 басс/мин - две вместе.
Находим время наполнения 1 бассейна
4) Т = Б/Vc = 1 (басс) : 1/15 (басс/мин) = 15 мин - наполнят вместе - ОТВЕТ



Problem Analysis
We are given two pipes, where the first pipe can fill a swimming pool in 24 minutes and the second pipe can fill the same pool in 40 minutes. We need to determine how long it will take to fill the pool if both pipes are turned on simultaneously.Solution
To solve this problem, we can calculate the rate at which each pipe fills the pool and then add their rates together to find the combined rate. We can then use the combined rate to calculate the time it takes to fill the pool.Let's denote the rate at which the first pipe fills the pool as R1 and the rate at which the second pipe fills the pool as R2. The time it takes to fill the pool when both pipes are turned on simultaneously can be calculated using the formula:
Time = Volume / Combined Rate
Since the volume of the pool is not given, we can assume it to be 1 unit for simplicity. Therefore, the time it takes to fill the pool can be calculated as:
Time = 1 / (R1 + R2)
Now, let's calculate the rates at which each pipe fills the pool.
Calculation
The rate at which the first pipe fills the pool can be calculated as the reciprocal of the time it takes to fill the pool, which is 24 minutes:R1 = 1 / 24
Similarly, the rate at which the second pipe fills the pool can be calculated as the reciprocal of the time it takes to fill the pool, which is 40 minutes:
R2 = 1 / 40
Now, let's calculate the combined rate:
Combined Rate = R1 + R2
Substituting the values of R1 and R2:
Combined Rate = 1/24 + 1/40
Simplifying the expression:
Combined Rate = 5/120 + 3/120 = 8/120 = 1/15
Therefore, the combined rate at which both pipes fill the pool is 1/15.
Now, let's calculate the time it takes to fill the pool using the combined rate:
Time = 1 / (1/15) = 15
Therefore, it will take 15 minutes to fill the pool if both pipes are turned on simultaneously.
Answer
If both pipes are turned on simultaneously, it will take 15 minutes to fill the pool.

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili