
В одной урне 3 белых шара и 5 красных ,в другой 4 белых и 2 красных из каждой урны случайным
образом выбирают по одному шару.какова вероятность того что шары одинакового цвета?

Ответы на вопрос




Итак, у нас есть две урны: в первой урне 3 белых шара и 5 красных, а во второй урне 4 белых и 2 красных. Мы случайным образом выбираем по одному шару из каждой урны. Нам нужно определить вероятность того, что выбранные шары будут одного цвета.
Решение:
Для решения этой задачи мы можем использовать метод комбинаторики. Давайте рассмотрим два случая: когда мы выбираем два белых шара и когда мы выбираем два красных шара.Случай 1: Выбор двух белых шаров: Вероятность выбрать два белых шара можно рассчитать, разделив количество благоприятных исходов на общее количество возможных исходов. В данном случае, количество благоприятных исходов - это количество способов выбрать 2 белых шара из первой урны (3 белых шара) и 2 белых шара из второй урны (4 белых шара). Общее количество возможных исходов - это количество способов выбрать по одному шару из каждой урны.
Итак, вероятность выбрать два белых шара составляет:
P(два белых шара) = (количество способов выбрать 2 белых шара из первой урны) * (количество способов выбрать 2 белых шара из второй урны) / (общее количество возможных исходов)
Случай 2: Выбор двух красных шаров: Аналогично, вероятность выбрать два красных шара составляет:
P(два красных шара) = (количество способов выбрать 2 красных шара из первой урны) * (количество способов выбрать 2 красных шара из второй урны) / (общее количество возможных исходов)
Вычисление вероятности:
Теперь давайте вычислим вероятность для каждого случая, используя данные из поисковых результатов.Из поисковых результатов мы получаем следующую информацию: - Количество способов выбрать 2 белых шара из первой урны: C(3, 2) = 3 - Количество способов выбрать 2 белых шара из второй урны: C(4, 2) = 6 - Общее количество возможных исходов: C(8, 2) = 28
Из поисковых результатов мы также получаем следующую информацию: - Количество способов выбрать 2 красных шара из первой урны: C(5, 2) = 10 - Количество способов выбрать 2 красных шара из второй урны: C(2, 2) = 1 - Общее количество возможных исходов: C(8, 2) = 28
Теперь мы можем вычислить вероятность для каждого случая:
P(два белых шара) = (3 * 6) / 28 = 0.6428571428571429
P(два красных шара) = (10 * 1) / 28 = 0.35714285714285715
Ответ:
Таким образом, вероятность того, что выбранные шары будут одного цвета, составляет: - Вероятность выбрать два белых шара: 0.6428571428571429 - Вероятность выбрать два красных шара: 0.35714285714285715Пожалуйста, обратите внимание, что эти значения округлены до 15 знаков после запятой.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili