Вопрос задан 30.07.2018 в 19:41. Предмет Математика. Спрашивает Попов Саша.

Отец оставил трём сыновьям в наследство 27 верблюдов. Старшему сыну досталось больше всех, а

младшему – меньше всех. Если бы старший сын отдал младшему двух верблюдов, то у всех стало бы верблюдов поровну. Сколько верблюдов досталось в наследство среднему сыну? Запиши решение и ответ.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Лавренов Андрей.
27÷3=9(врб)
Ответ:9 верблюдов досталось среднему сыну
0 0
Отвечает Волкова Анастасия.
27:3=9-если было бы поровну
9- у среднего
9+2=11- у старшего
9-2=7- у младшего
0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Problem Analysis

In this problem, we are given that a father left an inheritance of 27 camels to his three sons. The eldest son received more camels than the others, while the youngest son received fewer camels than the others. We are also given that if the eldest son gave two camels to the youngest son, then all the sons would have an equal number of camels. We need to determine how many camels the middle son received in the inheritance.

Solution

Let's assume that the middle son received x camels in the inheritance.

According to the given information, the eldest son received more camels than the others, so let's assume that the eldest son received y camels, where y > x.

The youngest son received fewer camels than the others, so let's assume that the youngest son received z camels, where z < x.

We are also given that if the eldest son gave two camels to the youngest son, then all the sons would have an equal number of camels. This means that if we subtract two camels from the eldest son's share and add them to the youngest son's share, all three sons would have an equal number of camels.

So, after this redistribution, the eldest son would have y - 2 camels, the middle son would have x camels, and the youngest son would have z + 2 camels.

According to the given condition, after this redistribution, all three sons would have an equal number of camels. Therefore, we can set up the following equation:

(y - 2) = (x + 2) = (z + 2)

Simplifying this equation, we get:

y - 2 = x + 2 = z + 2

Now, let's solve this equation to find the values of x, y, and z.

From the equation, we can deduce that:

y = x + 4

z = x - 2

Substituting these values back into the equation, we get:

(x + 4) - 2 = x + 2

Simplifying this equation, we find:

x + 2 = x + 2

This equation is true for any value of x. Therefore, the value of x can be any number.

Since we need to determine how many camels the middle son received, the answer is x.

Therefore, the number of camels that the middle son received in the inheritance can be any number.

Answer

The number of camels that the middle son received in the inheritance can be any number.

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос