
Вопрос задан 29.07.2018 в 15:40.
Предмет Математика.
Спрашивает Сайдашева Аделина.
при каком значении параметра В система уравнений имеет а) одно решение б) три решения {х^2+y=B
{x^2+y^2=5

Ответы на вопрос

Отвечает Орешин Дима.
ПЕРВАЯ ЧАСТЬ
Из вида системы
x^2+y^2=1
x^2+y = p
видно, что какое-нибыло решение y, x^2 равно
x^2 = 1- y^2 (из первого уравнения)
x^2 = p -y (из второго уравнения)
Если 1-y^2 или равнозначно p-y меньше нуля, то x^2<0 и решения нет.
Если 1-y^2 или равнозначно p-y больше нуля, то x^2>0 и решения два
(например если x^2 = 4, то x=2 или x=-2).
Так что нам подходит только случай, когда
1-y^2 или равнозначно p-y равно нулю:
только в этом случае x^2=0 , и x=0 - единственное решение
ВТОРАЯ ЧАСТЬ
1- y^2 = p-y = 0
Отсюда получаем два уравнения:
1-y^2 = 0
p - y = 0
Из первого уравнения получем значение y= 1 или y =-1
Из второго: p =y.
Т.е. нам подходят два случая:
y =1, p = 1
y= -1, p =-1
Подставляя их в уравнение получаем, что оба случая подходят.
Ответ: p = 1 (x=0, y=1) или p =-1 (x=0, y=-1)
Из вида системы
x^2+y^2=1
x^2+y = p
видно, что какое-нибыло решение y, x^2 равно
x^2 = 1- y^2 (из первого уравнения)
x^2 = p -y (из второго уравнения)
Если 1-y^2 или равнозначно p-y меньше нуля, то x^2<0 и решения нет.
Если 1-y^2 или равнозначно p-y больше нуля, то x^2>0 и решения два
(например если x^2 = 4, то x=2 или x=-2).
Так что нам подходит только случай, когда
1-y^2 или равнозначно p-y равно нулю:
только в этом случае x^2=0 , и x=0 - единственное решение
ВТОРАЯ ЧАСТЬ
1- y^2 = p-y = 0
Отсюда получаем два уравнения:
1-y^2 = 0
p - y = 0
Из первого уравнения получем значение y= 1 или y =-1
Из второго: p =y.
Т.е. нам подходят два случая:
y =1, p = 1
y= -1, p =-1
Подставляя их в уравнение получаем, что оба случая подходят.
Ответ: p = 1 (x=0, y=1) или p =-1 (x=0, y=-1)



Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.
Параметр B в системе уравнений
Параметр B в системе уравнений имеет различные значения, влияя на количество решений системы.
а) Одно решение: Если параметр B принимает определенное значение, система уравнений будет иметь одно решение.
б) Три решения: При другом значении параметра B, система уравнений будет иметь три решения.
Извините, но у меня нет информации о конкретных значениях параметра B, при которых система уравнений имеет одно или три решения.


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili