
Y=6^sinxнайти производную функции.


Ответы на вопрос

затем находим внутреннюю f(x) = cosx
тогда получаем y= 6^sinx * ln6 * cosx



Finding the Derivative of Y = 6^sin(x)
To find the derivative of the function Y = 6^sin(x), we can use the chain rule, which states that the derivative of a composite function is the derivative of the outer function evaluated at the inner function, multiplied by the derivative of the inner function.
The derivative of Y with respect to x, denoted as dY/dx, can be found using the chain rule as follows:
Step 1: Identify the outer function and the inner function. - The outer function is the exponentiation function, f(u) = 6^u, where u = sin(x). - The inner function is u = sin(x).
Step 2: Find the derivative of the outer function with respect to u. - The derivative of the outer function f(u) = 6^u with respect to u is f'(u) = ln(6) * 6^u.
Step 3: Find the derivative of the inner function with respect to x. - The derivative of the inner function u = sin(x) with respect to x is u' = cos(x).
Step 4: Apply the chain rule to find the derivative of Y with respect to x. - Using the chain rule, the derivative of Y = 6^sin(x) with respect to x is: dY/dx = f'(u) * u' dY/dx = ln(6) * 6^sin(x) * cos(x).
Therefore, the derivative of Y = 6^sin(x) with respect to x is dY/dx = ln(6) * 6^sin(x) * cos(x).


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili