Вопрос задан 25.07.2018 в 02:30. Предмет Математика. Спрашивает Кириенко Михаил.

Когда ведро наполнено водой на две трети она весит а кг, а когда наполовину б килограмм .выразите

через A и B вес полного ведра.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Живчик Евгений.
Ответ-------------☆☆☆☆☆☆☆☆☆☆

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Давайте обозначим полный вес ведра за \( x \) килограмм. Тогда, если ведро наполнено водой на две трети, оно будет весить \( \frac{2}{3}x \) килограмма. Если вода в ведре наполовину, то вес воды будет составлять \( \frac{1}{2}x \) килограмма.

Мы знаем, что в первом случае вес воды равен \( a \) килограмм, а во втором случае вес воды равен \( b \) килограмм. Таким образом, у нас есть два уравнения:

\[ \frac{2}{3}x = a \] \[ \frac{1}{2}x = b \]

Нам нужно выразить полный вес ведра через \( a \) и \( b \). Для этого можно решить систему уравнений.

Решение уравнений

1. Мы можем выразить \( x \) из первого уравнения: \[ x = \frac{3a}{2} \]

2. Затем мы можем подставить это значение \( x \) во второе уравнение: \[ \frac{1}{2} \cdot \frac{3a}{2} = b \] \[ \frac{3a}{4} = b \]

Таким образом, вес полного ведра выражается через \( a \) и \( b \) следующим образом:

\[ x = \frac{3a}{2} \]

Таким образом, вес полного ведра составляет \( \frac{3}{2}a \).

0 0

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос