
A) x + |x| = 6 б) x - |x| = 5


Ответы на вопрос

Ответ:
a)x+|x|=6
x+x=6 , x>=0
x-x=6 , x<0
x=3 , x>=0
x=∅ , x<0
xЄ3
x=3
б)x-|x|=5
xЄ∅ , x>=0
x=5/2 , x<0
xЄ∅
xЄ∅
xЄ∅



Let's solve these two equations for the variable x:
A) x + |x| = 6
To solve this equation, we can consider two cases: one where x is non-negative (x ≥ 0) and one where x is negative (x < 0).
Case 1: x is non-negative (x ≥ 0): In this case, |x| is simply equal to x, so the equation becomes: x + x = 6 2x = 6 x = 6/2 x = 3
Case 2: x is negative (x < 0): In this case, |x| is equal to -x (because the absolute value of a negative number is its positive counterpart), so the equation becomes: x - (-x) = 6 x + x = 6 2x = 6 x = 6/2 x = 3
So, for both cases, the solution is x = 3.
B) x - |x| = 5
Again, let's consider two cases: one where x is non-negative (x ≥ 0) and one where x is negative (x < 0).
Case 1: x is non-negative (x ≥ 0): In this case, |x| is simply equal to x, so the equation becomes: x - x = 5 0 = 5
This case has no solution because it leads to an equation that is not true.
Case 2: x is negative (x < 0): In this case, |x| is equal to -x, so the equation becomes: x - (-x) = 5 x + x = 5 2x = 5 x = 5/2
So, for this case, the solution is x = 5/2.
Therefore, the second equation (B) has a solution only when x is negative, and in that case, x = 5/2. There is no solution for the non-negative case.


Похожие вопросы

Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili