1/2 умножить на 2/3 умножить на 3/4 умножить на ... равно 999/1000
Ответы на вопрос
1/2*2/3*3/4= 4
999/1000:4= 999/1000*1/4= 999/4000
1/2*2/3*3/4*999/4000= 999/1000
To find the value of the expression 1/2 * 2/3 * 3/4 * ..., which continues indefinitely and equals 999/1000, we can use the concept of infinite geometric progression.
Let's denote the expression as S:
S = 1/2 * 2/3 * 3/4 * ...
Notice that each term in the expression can be represented as a fraction of the form (n / n + 1), where n starts from 1 and keeps increasing by 1 for each subsequent term.
So, S can be written as:
S = (1/2) * (2/3) * (3/4) * ... * (n / n + 1)
Now, we want to find the value of S when n approaches infinity, which will be equal to 999/1000.
Let's set up the equation:
S = (1/2) * (2/3) * (3/4) * ... * (n / n + 1) = 999/1000
Since the expression continues indefinitely, we can write S as a product of two infinite series:
S = (1/2) * (2/3) * (3/4) * ... * (n / n + 1) = (1/2) * (2/3) * (3/4) * ... * (n / n + 1) * [(n + 1) / (n + 1)]
Now, notice that each term in the parentheses of the second product cancels with the term in the numerator of the next fraction:
S = (1/2) * (2/3) * (3/4) * ... * (n / n + 1) * [(n + 1) / (n + 1)] = (1/2) * (1)
Simplifying further:
S = 1/2
Thus, the infinite product 1/2 * 2/3 * 3/4 * ... is equal to 1/2 and not 999/1000 as given. There might be an error or misunderstanding in the original statement of the problem.
Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili
