Вопрос задан 11.07.2023 в 17:56. Предмет Математика. Спрашивает Христич Настя.

7. If 12 men or 15 women can finish a piece of work in 66 days, how long will 24 men and 3 women

take to finish the work?​
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Маснюк Мира.

Ответ:

12men <--> 66days

--> 1men <--> 66*12=792days

--> 24men <--> 792/24 = 66/2 = 33 days

15women <--> 66days

--> 1women <--> 66*15=990days

--> 3women <--> 990/3 = 66*5 = 330 days

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

To solve this problem, we can first calculate the work rate of one man and one woman, and then use that information to find out how long it will take for 24 men and 3 women to finish the work together.

Let's assume that the amount of work to be done is represented as "W."

Given that 12 men or 15 women can finish the work in 66 days, we can write the following equations:

  1. Work rate of one man = W / (12 * 66)
  2. Work rate of one woman = W / (15 * 66)

Now, we need to find the combined work rate of 24 men and 3 women:

Combined work rate = (24 * Work rate of one man) + (3 * Work rate of one woman)

Now, let's calculate the combined work rate:

Combined work rate = (W / (12 * 66) * 24) + (W / (15 * 66) * 3)

To find out how long it will take for 24 men and 3 women to finish the work together, we need to find the reciprocal of the combined work rate, as time is inversely proportional to work rate.

Time required for 24 men and 3 women to finish the work = 1 / Combined work rate

Now, we can simplify the expression to find the answer:

Time required = 1 / [(W / (12 * 66) * 24) + (W / (15 * 66) * 3)]

Since the amount of work "W" is constant, it cancels out from the equation, and we are left with:

Time required = 1 / [(1 / (12 * 66) * 24) + (1 / (15 * 66) * 3)]

Now, let's calculate the value:

Time required = 1 / [(1 / (792) * 24) + (1 / (990) * 3)]

Time required = 1 / [(1 / 19008) + (1 / 2970)]

Time required = 1 / [0.00005258 + 0.0003367]

Time required = 1 / 0.00038928

Time required ≈ 2569.40 days

So, it will take approximately 2569.40 days for 24 men and 3 women to finish the work together.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос