Вопрос задан 10.07.2023 в 22:05. Предмет Математика. Спрашивает Серикова Камшат.

Решите систему уравнения ху-2у-4х=-5 у-3х=-2

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Ахмедшина Екатерина.

Ответ: x =3+y

Пошаговое объяснение:

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для решения данной системы уравнений, мы можем использовать метод подстановки или метод сложения/вычитания. В данном случае, воспользуемся методом сложения/вычитания.

Система уравнений:

  1. xu2u4x=5xu - 2u - 4x = -5
  2. 3x+y=2-3x + y = -2

Сначала выразим одну из переменных из одного уравнения и подставим её во второе уравнение.

Из уравнения (2) выразим yy: y=3x2y = 3x - 2

Теперь подставим выражение для yy из уравнения (2) в уравнение (1): xu2u4x=5xu - 2u - 4x = -5 3x+y=2-3x + y = -2

Подставляем выражение для yy: xu2u4x=5xu - 2u - 4x = -5 3x+(3x2)=2-3x + (3x - 2) = -2

Упростим уравнение: xu2u4x=5xu - 2u - 4x = -5 x2u4x=2x - 2u - 4x = -2

Сгруппируем одинаковые переменные: 3x2u=2-3x - 2u = -2

Теперь решим полученное уравнение относительно uu: u=2+3x2=3x22u = \frac{-2 + 3x}{2} = \frac{3x - 2}{2}

Теперь, когда мы нашли выражение для uu, можем подставить его обратно в уравнение для yy: y=3x2y = 3x - 2

Таким образом, решение системы уравнений: u=3x22u = \frac{3x - 2}{2} y=3x2y = 3x - 2

Выразили переменные uu и yy через xx.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос