
Вопрос задан 11.07.2018 в 12:51.
Предмет Математика.
Спрашивает Николаева Вики.
Сумма трёх чисел образующих арифметическую прогрессии равна 15 если к ним прибавить соответственно
1, 4 и 19 то полученные числа состоят геометрическую прогрессию найдите эти числа

Ответы на вопрос

Отвечает Шилкин Максим.
Пусть разность арифметической прогрессии d, а второе число - x. Тогда (x - d) + x + (x + 9) = 15, откуда 3x = 15, то есть, x = 5.
Если члены были 5 - d, x, 5 + d, то стали 6 - d, 9, 24 + d. Если эти числа образуют геометрическую прогрессию, то два последовательных числа отличаются в одинаковое число раз:
(24+d)/9 = 9/(6 - d)
Раскрывая, получим:
d^2 + 18d - 63 = 0
решаем квадратное уравнение, получаем: d = (-18 +- sqrt(18*18+63*4))/2 = -9 +- 12 = {-21, 3}
То есть, исходные числа были либо (26, 5, -16), либо (2, 5, 8)


Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
Предметы
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili