
5x+2y=15,8x+Зу = 20


Ответы на вопрос

Ответ:
1) 5х+2у-15=0
2)8х+3у-20=0



Ответ:
1) 5x+2y-15=0
2) 8x+3y-20=0



To solve the system of equations:
5x + 2y = 15 ...(Equation 1) 8x + 3y = 20 ...(Equation 2)
There are multiple ways to solve this system, such as substitution, elimination, or using matrices. Here, I will show you how to solve it using the elimination method:
Step 1: Multiply Equation 1 by 4 and Equation 2 by 5 to make the coefficients of 'y' in both equations the same. This will allow us to eliminate 'y' when we subtract the equations.
4(5x + 2y) = 4(15) ...(Multiply Equation 1 by 4) 5(8x + 3y) = 5(20) ...(Multiply Equation 2 by 5)
Simplifying these equations, we get:
20x + 8y = 60 ...(Equation 3) 40x + 15y = 100 ...(Equation 4)
Step 2: Now, subtract Equation 3 from Equation 4 to eliminate 'x':
(40x + 15y) - (20x + 8y) = 100 - 60
Simplifying this equation, we get:
20x + 7y = 40 ...(Equation 5)
Step 3: Now we have two equations:
20x + 7y = 40 ...(Equation 5) 8x + 3y = 20 ...(Equation 2)
We can solve this system using either substitution or elimination method. I will use the elimination method again to eliminate 'x'.
Step 4: Multiply Equation 5 by 4 and Equation 2 by 5 to make the coefficients of 'x' in both equations the same:
4(20x + 7y) = 4(40) ...(Multiply Equation 5 by 4) 5(8x + 3y) = 5(20) ...(Multiply Equation 2 by 5)
Simplifying these equations, we get:
80x + 28y = 160 ...(Equation 6) 40x + 15y = 100 ...(Equation 4)
Step 5: Subtract Equation 4 from Equation 6 to eliminate 'y':
(80x + 28y) - (40x + 15y) = 160 - 100
Simplifying this equation, we get:
40x + 13y = 60 ...(Equation 7)
Step 6: Now we have two equations:
40x + 13y = 60 ...(Equation 7) 40x + 15y = 100 ...(Equation 4)
Step 7: Subtract Equation 7 from Equation 4 to eliminate 'x':
(40x + 15y) - (40x + 13y) = 100 - 60
Simplifying this equation, we get:
2y = 40
Dividing both sides by 2, we find:
y = 20
Step 8: Now that we have the value of 'y', we can substitute it back into Equation 4 to find 'x':
40x + 15(20) = 100
Simplifying this equation, we get:
40x + 300 = 100
Subtracting 300 from both sides, we get:
40x = -200
Dividing both sides by 40, we find:
x = -5
Therefore, the solution to the system of equations is x = -5 and y = 20.


Похожие вопросы
Топ вопросов за вчера в категории Математика
Последние заданные вопросы в категории Математика
-
Математика
-
Литература
-
Алгебра
-
Русский язык
-
Геометрия
-
Английский язык
-
Химия
-
Физика
-
Биология
-
Другие предметы
-
История
-
Обществознание
-
Окружающий мир
-
География
-
Українська мова
-
Информатика
-
Українська література
-
Қазақ тiлi
-
Экономика
-
Музыка
-
Право
-
Беларуская мова
-
Французский язык
-
Немецкий язык
-
МХК
-
ОБЖ
-
Психология
-
Физкультура и спорт
-
Астрономия
-
Кыргыз тили
-
Оʻzbek tili