Вопрос задан 22.06.2023 в 07:12. Предмет Математика. Спрашивает Рымар Иван.

B6. Написать уравнение касательной к графику функции y=x-3/x+4 в точке с абсциссой x0=-3?

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Федів Антон.

Ответ:

Пошаговое объяснение:

уравнение касательной

Ук = у(х0) +y'(x0)(x-x0)

производная

у' = 1+1/x²

y(x0) = 2

y'(x0) = 4/3

уравнение

Ук = 2 + (4/3)(х+3)

или

Ук = (4/3)х +6

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Чтобы найти уравнение касательной к графику функции y = (x - 3) / (x + 4) в точке с абсциссой x0 = -3, мы должны выполнить следующие шаги:

  1. Найдите производную данной функции, которая будет равна производной от (x - 3) / (x + 4).

  2. Вычислите значение производной в точке x0 = -3, чтобы найти угловой коэффициент касательной.

  3. Используйте найденный угловой коэффициент и точку x0 = -3, чтобы записать уравнение касательной.

Давайте начнем с первого шага:

  1. Найдем производную функции y = (x - 3) / (x + 4). Для этого используем правило дифференцирования частного и правило дифференцирования суммы:

    y = (x - 3) / (x + 4) y' = [(x + 4)(1) - (x - 3)(1)] / (x + 4)^2

Упростим числитель:

y' = (x + 4 - x + 3) / (x + 4)^2 y' = 7 / (x + 4)^2

  1. Теперь найдем значение производной в точке x0 = -3:

    y'(x0) = 7 / (-3 + 4)^2 y'(-3) = 7 / (1)^2 y'(-3) = 7

Теперь у нас есть угловой коэффициент касательной, который равен 7, и точка x0 = -3.

  1. Теперь мы можем записать уравнение касательной в форме:

    y - y0 = m(x - x0),

где y0 - значение функции в точке x0, m - угловой коэффициент.

y0 можно найти, подставив x0 = -3 в исходную функцию:

y0 = (-3 - 3) / (-3 + 4) y0 = (-6) / (1) y0 = -6

Теперь можем записать уравнение касательной:

y - (-6) = 7(x - (-3))

Упростим:

y + 6 = 7(x + 3)

Теперь уравнение касательной к графику функции y = (x - 3) / (x + 4) в точке с абсциссой x0 = -3 выглядит следующим образом:

y + 6 = 7x + 21

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос