Вопрос задан 20.06.2023 в 10:25. Предмет Математика. Спрашивает Левченко Даша.

Очень срочноооо В основі прямого паралелепіпеда лежить ромб. Висота паралелепіпеда дорівнює 8 см,

а діагоналі — 24 см і 10 см. Знайдіть площу поверхні паралелепіпеда.
0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Павлюк Виктория.

Пошаговое объяснение:

Т. к в основании ромб, то диагонали d1 и d2 перпендикулярны и точкой пересечения делятся пополам

По теореме Пифагора Находим сторону ромба:

a=корень ((d1/2)^2+(d2/2)^2)=

=корень((24:2)^2+(10:2)^2)=

=корень (144+25)=корень169=13 см

Площадь основания:

Sосн=1/2×d1×d2=1/2×24×10=120 см^2

Площадь боковой стороны:

Sбок=а×h =13×8=104 cм^2

Sобщ=2Sосн+4Sбок=

=2×120+4×104=240+416=656 см^2

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

Для розв'язання цієї задачі, спочатку треба знайти бічні сторони ромба (основи паралелепіпеда). Оскільки ромб - це чотирикутник зі всіма сторонами однакової довжини, а діагоналі ромба перпендикулярні та ділять його на чотири рівні трикутники, то можна визначити сторони ромба за допомогою теорем Піфагора.

Нехай \(a\) і \(b\) - бічні сторони ромба. Тоді ми можемо використовувати теорему Піфагора для обчислення їх довжин:

\[a^2 + b^2 = d^2\]

де \(d\) - довжина діагоналі ромба. В нашому випадку:

\[a^2 + b^2 = 10^2\]

\[a^2 + b^2 = 100\]

Далі, відомо, що висота паралелепіпеда дорівнює 8 см, і вона є відстанню між протилежними вершинами ромба. Таким чином, можемо скористатися теоремою Піфагора для трикутника, щоб знайти відстань між центрами протилежних сторін ромба:

\[(\frac{a}{2})^2 + (\frac{b}{2})^2 = h^2\]

де \(h\) - висота паралелепіпеда.

Підставимо значення \(h = 8\) і розв'яжемо для \(a\) і \(b\). Після цього можна визначити площу поверхні паралелепіпеда, використовуючи формулу:

\[S = 2ab + 2ah + 2bh\]

Отримані результати вам допоможуть вирішити задачу.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос