Вопрос задан 18.06.2023 в 03:33. Предмет Математика. Спрашивает Базрова Лариса.

1) 5/12-1/1/5 ×9/112)5/12-1/1/53)10/11×2/3/15 памагите срочно ​

0 0
Перейти к ответам

Ответы на вопрос

Внимание! Ответы на вопросы дают живые люди. Они могут содержать ошибочную информацию, заблуждения, а также ответы могут быть сгенерированы нейросетями. Будьте внимательны. Если вы уверены, что ответ неверный, нажмите кнопку "Пожаловаться" под ответом.
Отвечает Чёрный Арсений.

Ответ:

Пошаговое объяснение:

1 пример

1) 1. 1/5 * 9/11 = 6/5 * 9/11 = 54/55

2) 5/12 - 54/55 = 275/660 - 648/660 = -373/660

Пример 2 :

5/12 - 1. 1/5 = 25/60 - 1. 12/60 = 25/60 - 72/60 = -47/60

Пример 3:

10/11 * 2. 3/15 = 10/11 * 33/15 = 2/1 * 3/3 = 6/3 = 2

0 0
Отвечает нейросеть ChatGpt. Будьте внимательны, ответы нейросети могут содержать ошибочные или выдуманные данные.

1) To solve the expression 5/12 - 1/(1/5) + (9/11)*(2/3), we need to follow the order of operations, which is commonly known as PEMDAS (Parentheses, Exponents, Multiplication and Division, and Addition and Subtraction).

First, let's simplify the expression inside the parentheses: 1/(1/5) = 1 / (1 * 5) = 1/5

Now, let's substitute the simplified expression back into the original expression: 5/12 - 1/5 + (9/11)*(2/3)

Next, let's simplify the multiplication: (9/11)*(2/3) = (9 * 2) / (11 * 3) = 18/33

Now, let's substitute the simplified multiplication back into the expression: 5/12 - 1/5 + 18/33

To add or subtract fractions, we need to find a common denominator. In this case, the common denominator is 60: 5/12 = (5 * 5) / (12 * 5) = 25/60 1/5 = (1 * 12) / (5 * 12) = 12/60 18/33 = (18 * 20) / (33 * 20) = 360/660

Now, let's substitute the fractions with the common denominator back into the expression: 25/60 - 12/60 + 360/660

Finally, let's add or subtract the fractions: 25/60 - 12/60 + 360/660 = (25 - 12 + 360) / 660 = 373/660

Therefore, the value of the expression 5/12 - 1/(1/5) + (9/11)*(2/3) is 373/660.

2) To solve the expression 5/12 - 1/(1/53), we need to follow the order of operations.

First, let's simplify the expression inside the parentheses: 1/(1/53) = 1 / (1 * 53) = 1/53

Now, let's substitute the simplified expression back into the original expression: 5/12 - 1/53

To subtract fractions, we need to find a common denominator. In this case, the common denominator is 636: 5/12 = (5 * 53) / (12 * 53) = 265/636 1/53 = (1 * 12) / (53 * 12) = 12/636

Now, let's substitute the fractions with the common denominator back into the expression: 265/636 - 12/636

Finally, let's subtract the fractions: 265/636 - 12/636 = (265 - 12) / 636 = 253/636

Therefore, the value of the expression 5/12 - 1/(1/53) is 253/636.

3) To solve the expression 10/11 * 2/3 / 15, we need to follow the order of operations.

First, let's simplify the multiplication: 10/11 * 2/3 = (10 * 2) / (11 * 3) = 20/33

Now, let's substitute the simplified multiplication back into the original expression: 20/33 / 15

To divide fractions, we need to multiply the first fraction by the reciprocal of the second fraction. The reciprocal of 15 is 1/15: 20/33 * 1/15 = (20 * 1) / (33 * 15) = 20/495

Therefore, the value of the expression 10/11 * 2/3 / 15 is 20/495.

I hope this helps! Let me know if you have any further questions.

0 0

Похожие вопросы

Топ вопросов за вчера в категории Математика

Последние заданные вопросы в категории Математика

Задать вопрос